

ADVERTISEMENT

Call for quotations for various Scientific Equipment and Apparatus and Software Solutions.

Department of Technology, Savitribai Phule Pune University, Pune-07.

To Whom It May Concern:

Sealed quotations in plain envelope are invited from the intending registered firms, authorized distributors/dealers holding a valid PAN and GST number for supply, installation and maintenance of items listed in table below.

Sr. No.	Name	Quty.
1	Simulator Panel: Light Weight Electric Vehicle	1
2	New Energy Power Battery Pack Training System	1
3	New Energy Electric Drive Transmission System	1
4	Passive Safety Devices for Motorcars	1
5	Antilock Braking Simulator	1
6	SCARA ROBOT, LEECH, MultiGripper Robot	1
7	Robotics and Automation for Electric Mobility	1
8	Robotics Laboratory	1
9	Electric Power Train Test Bench	1
10	Li-Ion Test setup	1
11	IoT Lab	1
12	Structural Analysis and Optimization Framework	1
13	CFD and Thermal Management Application	1
14	Motor and Control System Design Framework	1
15	Antenna Design and High Frequency EM Simulation Interface	1
16	Vehicle Dynamics and Suspension Analysis Framework	1

Interested parties must send their quotations comprising of prices for each setup and 1-year support (as per annexure) on or before 04:00 PM, 20th March 2020 to Department of Technology, SPPU.

The quotations received incomplete in any form or after scheduled date will be disqualified. The undersigned reserves the right to reject any or all the quotations.

Department of Technology Savitribai Phule Pune University (Formerly University of Pune) 16 MAR 2020 Outward No. Tech / 282/19-20

Head Department of Technology Savitribai Phule Pune University (Formerly University of Pune) Pune - 411 007.

ANNEXURE Simulator Panel: Light Weight Electrical Vehicle

Light Weight Electrical Vehicle Specifications Learning Objects: This simulation panel allows the theoretical and practical study of the main circuits and components that are used in lightweight electric vehicles. The panel divided into four blocks allows an easy and comprehensive learning of the characteristics and advantages of the electric traction developed for urban needs. General Characteristics Dim. mm approx (HxLxW) : 700x1000x150 - (470 with the base) Weight approx. kg 25 Input power supply: AC 220V±10% 50 Hz Working temperature: -40°C ~ +50°C. Main Characteristics
Learning Objects: This simulation panel allows the theoretical and practical study of the main circuits and components that are used in lightweight electric vehicles. The panel divided into four blocks allows an easy and comprehensive learning of the characteristics and advantages of the electric traction developed for urban needs. General Characteristics • Dim. mm approx (HxLxW) : 700x1000x150 - (470 with the base) • Weight approx. kg 25 • Input power supply: AC 220V±10% 50 Hz • Working temperature: -40°C ~ +50°C. Main Characteristics
This simulation panel allows the theoretical and practical study of the main circuits and components that are used in lightweight electric vehicles. The panel divided into four blocks allows an easy and comprehensive learning of the characteristics and advantages of the electric traction developed for urban needs. General Characteristics • Dim. mm approx (HxLxW) : 700x1000x150 - (470 with the base) • Weight approx. kg 25 • Input power supply: AC 220V±10% 50 Hz • Working temperature: -40°C ~ +50°C. Main Characteristics
 components that are used in lightweight electric vehicles. The panel divided into four blocks allows an easy and comprehensive learning of the characteristics and advantages of the electric traction developed for urban needs. General Characteristics Dim. mm approx (HxLxW) : 700x1000x150 - (470 with the base) Weight approx. kg 25 Input power supply: AC 220V±10% 50 Hz Working temperature: -40°C ~ +50°C. Main Characteristics
 allows an easy and comprehensive learning of the characteristics and advantages of the electric traction developed for urban needs. General Characteristics Dim. mm approx (HxLxW) : 700x1000x150 - (470 with the base) Weight approx. kg 25 Input power supply: AC 220V±10% 50 Hz Working temperature: -40°C ~ +50°C. Main Characteristics
 electric traction developed for urban needs. General Characteristics Dim. mm approx (HxLxW) : 700x1000x150 - (470 with the base) Weight approx. kg 25 Input power supply: AC 220V±10% 50 Hz Working temperature: -40°C ~ +50°C. Main Characteristics
 General Characteristics Dim. mm approx (HxLxW) : 700x1000x150 - (470 with the base) Weight approx. kg 25 Input power supply: AC 220V±10% 50 Hz Working temperature: -40°C ~ +50°C. Main Characteristics
 Dim. mm approx (HxLxW) : 700x1000x150 - (470 with the base) Weight approx. kg 25 Input power supply: AC 220V±10% 50 Hz Working temperature: -40°C ~ +50°C. Main Characteristics
 Weight approx. kg 25 Input power supply: AC 220V±10% 50 Hz Working temperature: -40°C ~ +50°C. Main Characteristics
 Input power supply: AC 220V±10% 50 Hz Working temperature: -40°C ~ +50°C. Main Characteristics
 Working temperature: -40°C ~ +50°C. Main Characteristics
Main Characteristics
The simulator is divided in four sections: 🛛 A common
part where the selector switch is located and other relevant buttons for the interaction of
the simulator
are placed 🛽 A section for the study of the electric
bicycle 🛙 A section for the study of electric scooter 🖻 A
section for the study of electric car For all three vehicles, the simulator can analyse the normal drive operation and those that depends on the slope of the road. Furthermore, the different types of batteries available in the market and their recharging systems are also studied. This vertical frame bench-top trainer is specially designed to show to students how automotive systems work. The simulator consists of a panel operated by the support of a computer with a coloured silk-screen diagram that clearly shows the structure of the system and allows the location of the components on it. The display of the information available on the computer screen allows the continuous control of the educational system. The operational conditions can be entered by the students and the insertion of faults can be carried out through the computer by the teacher. The trainer is supplied with a CAI Software and the supported documentation guides the students to the study and the performance of the simulation exercises. All

New Energy Power Battery Pack Training System

Sr.No.	New Energy Power Battery Pack Training System Name of Items				
1.	New Energy Power Battery Pack Training System.				
	Specification: -				
	Learning Objects:				
	This demonstration panel is designed for the study of the lithium iron phosphate power battery				
	pack. A single battery 3.2V 50AH is supplied with aluminum square case, 23 strands in total, 73.6V				
	50AH of total capacity (3.7 kilowatt-hour) and integrated BMS battery management system. The				
	device gives the opportunity to develop students' ability to analyze and process of the failures of				
	lithium iron phosphate power battery pack.				
	General Characteristics: -				
	● Dim. mm (HxLxW) : 1800x1200x1200 🛛				
	Weight approx. 200 kg				
	 Input power supply: A.C. 220V ± 10% 50Hz. 				
	Operating voltage: 12V DC.				
	 Operating functioning temperature: -40°C to +50°C. 				
	Main Characteristics: -				
	All main components are installed on a bench, with the same electrical connection mode as in real				
	vehicles, convenient for assembly and disassembly. Main component:				
	 Detection control panel (with various detection terminals) 				
	Lithium iron phosphate power battery pack				
	BMS Battery Management System				
	 Display screen to show the real time details about power battery pack 				
	 Vehicle-mounted charger and charging plug 				
	Emergency power switch				
	 DC-DC (From 72v DC to 12v DC) converter. 				
	Auxiliary accumulator.				
	Electric discharge control relay.				
	Movable framework.				
	Students can learn the disassembly points and safety protection of high voltage system components				
	during disassembling and assembling connections. It truly represents the construction and control				
	relationship, installation position and operating parameters of key components of the lithium iron				
	phosphate, power battery pack. It helps trainees to develop the fault analysis and processing skills				
	about the power battery pack.				
	Other Characteristics: -				
	• a) The connecting lines can be scanned with the help of a two-dimensional code, after				
	which, their assembly and disassembly methods and precautions can be completely				
	demonstrated on the screen.				
	 b) The power battery pack display is installed 				
	 on theteaching board to help students to observe the parameters in the charging and discharging process and master the control logic of the charging and discharging process and 				
	the law of parametric variation of main components. With the help of a smart switch, the				
	control logic of charging and discharging process can be reproduced on the screen. c) The				
	training bench consists of a bench and a teaching board. The bench is placed horizontally for				
	installing main components while the teaching board is placed vertically and connected with				
	the bench with screws. d) 4 wheels are mounted for moving flexibly, which also have self-loc				
	device for fixing position. e) The top cover of power battery pack is transparent so students				
	can observe the internal structure easily. f) A mechanical maintenance switch is built in the				

 maintenance switch is pulled out. g) The outline line of power battery pack is equipped wi an additional mechanical disconnecting emergency switch, which is applicable for easily disconnecting the main power supply circuit in emergency circumstances. Accessories: - Suggested instruments for best practice: Digital Multimeter. 			
• Suggested instruments for best practice. Digital Multimeter.			

New Energy Electric Drive Transmission System

Sr.No.	Name of Items				
1.	New Energy Electric Drive Transmission System.				
	Specifications: -				
	Learning Objects				
	The training bench is designed to develop the mainstream new energy pure electric vehicle components, having				
	the same function and control mode of the popular pure electric vehicles.				
	This trainer truly presents the connection and control relationship among the core components of new energy				
	pure electric drive system, the installation position and operating parameters and the safety precautions for high				
	voltage system. It is developed to improve students' ability to analyze and process the failures of new energy pure				
	electric drive system.				
	Main Characteristics:-				
	This truly operational new energy electric drive transmission system integration fully demonstrates the structure				
	and logic control relationship of all main components. All components are installed on the bench, with the same				
	electrical connection mode as real vehicles, convenient for assembly and disassembly. This makes students learn				
	the disassembly points and safety protection of high voltage system components during disassembling and				
	assembling connection. The connecting lines can be scanned with the help of a two-dimensional code, after				
	which, their assembly and disassembly methods and precautions can be completely demonstrated on the				
	screen.Real-time details display screen.				
	General Characteristics:-				
	• Dim. mm (HxLxW) : 1800x1600x1200				
	Weight approx. 300 kg				
	Auxiliary battery: 12V 45AH.				
	• Power battery type: Environment-friendly lithium iron phosphate power battery (square aluminum case,				
	single battery 3.2V 50AH).				
	Capacity of power battery pack: 72V 50AH (3.7 kilowatt-hour).				
	Input power supply: AC 220V±10% 50 Hz.				
	• Operating functioning temperature: -5°C to +40°C.				
	Accessories: -				
	Suggested instruments for best practice:				
	Digital Multimeter.				
	Vehicle-mounted charger and charging plug				
	• DC-DC (From 72v DC to 12v DC) converter				
	Electronic throttle assembly				
	Shift mechanism assembly				
	Driving motor / Motor controller				
	Gearbox / Driving shaft /Front wheel disc				
	Tension controller				
	 Booster pump assembly / Vacuum pump assembly /Vacuum tank assembly 				
	Auxiliary battery / Battery Management System (BMS)				
	Emergency power switch.				
	Other Characteristics: -				
	a) Power battery pack display, and instruments are installed on the teaching board, where there is a circuit control				
	chart. Pressing the accelerator, students can observe all the parameters about the running status of the vehicle				
	and master the operation control logic of pure electric vehicle and the law of parametric variation of main				
	components. With the help of smart switch, the control logic under each state can be reproduced on the screen.				
	b) The training bench consists of a main bench and a teaching board. The bench is placed horizontally for installing				
	main components. The teaching board is placed vertically and connected with screws. At the bottom of training				
	bench, 4 wheels are installed for moving flexibly, which also has self-lock device for fixing position. Pivoting				
	wheels are mounted. c) The power battery pack is designed to be translucent with built-in LED bank lights for				
L	wheels are mounted. Cy the power battery pack is designed to be transiddent with built-in LED bank lights for				

lighting so that students can observe the internal structure of battery. d) With real mechanical gear transmission
and brake system, students can observe the braking energy feedback current variation and master the concept of
braking energy absorption. e) The training bench has an electric vacuum assisted hydraulic brake system and
switch signals can be controlled intelligently through pressure sensor. f) The training bench is equipped with a 12V
power ground mechanical switch which can disconnect the 12V ground from time to time so as to disconnect the
power supply of the whole system. g) The training bench is equipped with brake shield and other safety protecting
devices for a safe use of students. h) It is equipped with intelligent fault

setting and appraisal system.

Passive Safety Devices for Motorcars

Sr.No.	Name of Items
1.	Passive Safety Devices for Motorcars
	Learning Objects:-
	This simulation panel allows the testing and the troubleshooting on the devices developed with the purpose of increasing the safety of driver and passengers inside motorcars. General Characteristics: -
	 Dim. mm approx (HxLxW) : 700x1000x150 - (470 with the base) Weight approx. kg 25
	 Input power supply: AC 220V±10% 50 Hz
	 Working temperature: -40°C ~ +50°C.
	Main Characteristics: -
	The simulator considers all those systems to allow the reduction of the consequences of accidents; in
	-bag (driver-bag, passenger-bag, side -off inertial
	-function valve in the fuel tank This vertical frame bench-top trainer is specially designed to show to
	students how automotive systems work. The simulator consists of a panel
	 operated by the support of a computer with a coloured silk-screen diagram that clearly shows the structure of the system and allows the location of the components on it. The display of the information available on the computer screen allows the continuous control of the educational system. The operational conditions can be entered by the students and the insertion of faults can be carried out through the computer by the teacher. The trainer is supplied with a CAI Software and the supported documentation guides the students to the study and the performance of the simulation exercises. All components installed and given
	leads are made to protect the safety of the students.

ANNEXURE Antilock Braking Simulator

Sr.No.	Name of Items				
1.	Antilock Braking Simulator				
	Specifications: -				
	Learning Objects:-				
	This simulation panel has been specially designed and realized to allow for a complete and easy				
	learning of the techniques and the electromechanical devices used in				
	the anti lock braking systems in the cars.				
	It is possible to simulate a braking system, provided with a four sensors anti-lock system (ABS). The				
	panel shows how modern car ABS systems are designed to operate.				
	General Characteristics				
	 Dim. mm approx (HxLxW) : 700x1000x150 - (470 with the base) 				
	Weight approx. kg 25				
	 Input power supply: AC 220V±10% 50 Hz 				
	 Working temperature: -40°C ~ +50°C. 				
	Main Characteristics:-				
	The system covers the following subjects:				
	 ABS operation when wheels rotate at different speeds 				
	 ABS operation when wheels rotate at same speed 				
	Pressure measurement during operation				
	Hydraulic ABS valve operation				
	Self-diagnosis control				
	Fault diagnosis procedure				
	 Various control signals measurements in the ABS system 				
	Low fluid level detection				
	 ABS operation with one wheel speed sensor is disconnected 				
	 ABS operation with destroyed hydraulic valve 				
	 Brake system operation when the electronic brake unit is disconnected 				
	 Brakes operation when there is leakage 				
	 System operation with different relative rotation speed of wheels 				
	ABS operation with hydraulic valve stuck.				
	This vertical frame bench-top trainer is specially designed to show to students how automotive				
	systems work. The simulator consists of a panel operated by the support of a computer with a				
	coloured silk-screen diagram that clearly shows the structure of the system and allows the location of				
	the components on it. The trainer is supplied with a CAI Software and the supported documentation				
	guides the students to the study and the performance of the simulation exercises. All components				
	installed and given leads are made to protect the safety of the students.				

Technical Specification for SCARA ROBOT, LEECH, MultiGripper Robot

Sr.	Technical Specification	Qty
no		~~,
no 1	SCARA Robot Features: • High Precision and Accuracy • Lightweight Design • Strong Arm • Ultra-Fast • High rigidity independent shaft for prismatic joint • Precision Drive • Easy Programming • Vertical / Incline climbing: no Specifications • Axis Specification: • X- Axis: 225 MM • Y- Axis : 175 MM • Z- Axis : 175 MM • End effector Rotation : 360 degree • Accuracy: 0.5 MM • Number of Axis / Joints: 4 • Pay load: 1.2 Kg • Weight : 14 kg Operating Range - J1 - 250 Deg ++ J2 - 260 Deg ++ J3 - 160 Deg ++	1
	J4 – 280 Deg++ Features of Multi - Gripper Robot: 1. Easy Programming: 2. Easy and Flexible deployment: 3. Reliable Gear Drive: The gear drive instead of the belt drive. 4. Servo Motors for precision and accuracy Power Consumption: 100 W (Approx.) Payload: 500 grams Degrees of Freedom: 4 Maximum reach: 350 mm Footprint: 300 mm Weight: 6 Kgs Enclosure Rating: IP54 Repeatability: +/- 1 mm Accuracy: +/- 1 mm Cable Length: 3 m or 6 m Outer Body Material: Nylon Power Consumption: 100 W (Approx.)	1

 Gripping Force: 0.8 N Total Stroke: 32 mm Force Sensing: Current dependent Supply: 5 V, 1A Control Signal: PWM Curvilinear jaw Robotic Gripper: -1 Gripping Force: 8 N Total Stroke: 60 degrees (capable to pick diameter up to 80 mm) Force Sensing: Current dependent Supply: 5 V, 1A Control Signal: PWM Specifications of Cam Guided Gripper:-1 Gripping Force: 0.8 to 1.2 N Total Stroke: 24 mm Force Sensing: Current dependent Supply: 5 V, 1A Control Signal: PWM 	Rack and Pinion Gripper:- 1		
 Force Sensing: Current dependent Supply: 5 V, 1A Control Signal: PWM Curvilinear jaw Robotic Gripper: -1 Gripping Force: 8 N Total Stroke: 60 degrees (capable to pick diameter up to 80 mm) Force Sensing: Current dependent Supply: 5 V, 1A Control Signal: PWM Specifications of Cam Guided Gripper:-1 Gripping Force: 0.8 to 1.2 N Total Stroke: 24 mm Force Sensing: Current dependent Supply: 5 V, 1A Control Signal: PWM Robotic Leech for Pipe Inspection and maintenance at various places. Minimum observable diameter of pipe: 75 mm Speed: 24 mm/s Total Weight: 104 g Enclosure: IP54 Power: Wired, 10W Control Input: PC Keyboard controlled Vertical/Incline Climbing: No 	Gripping Force: 0.8 N		
 Supply: 5 V, 1A Control Signal: PWM Curvilinear jaw Robotic Gripper: -1 Gripping Force: 8 N Total Stroke: 60 degrees (capable to pick diameter up to 80 mm) Force Sensing: Current dependent Supply: 5 V, 1A Control Signal: PWM Specifications of Cam Guided Gripper:-1 Gripping Force: 0.8 to 1.2 N Total Stroke: 24 mm Force Sensing: Current dependent Supply: 5 V, 1A Control Signal: PWM Robotic Leech for Pipe Inspection and maintenance at various places. Minimum observable diameter of pipe: 75 mm Speed: 24 mm/s Total Weight: 104 g Enclosure: IP54 Power: Wired, 10W Control Input: PC Keyboard controlled Vertical/Incline Climbing: No 	• Total Stroke: 32 mm		
 Control Signal: PWM Curvilinear jaw Robotic Gripper: -1 Gripping Force: 8 N Total Stroke: 60 degrees (capable to pick diameter up to 80 mm) Force Sensing: Current dependent Supply: 5 V, 1A Control Signal: PWM Specifications of Cam Guided Gripper:-1 Gripping Force: 0.8 to 1.2 N Total Stroke: 24 mm Force Sensing: Current dependent Supply: 5 V, 1A Control Signal: PWM Robotic Leech for Pipe Inspection and maintenance at various places. Minimum observable diameter of pipe: 75 mm Speed: 24 mm/s Total Weight: 104 g Enclosure: IP54 Power: Wired, 10W Control Input: PC Keyboard controlled Vertical/Incline Climbing: No 	Force Sensing: Current dependent		
Curvilinear jaw Robotic Gripper: -1•Gripping Force:8 N•Total Stroke: 60 degrees (capable to pick diameter up to 80 mm)•Force Sensing: Current dependent•Supply: 5 V, 1A•Control Signal: PWMSpecifications of Cam Guided Gripper:-1•Gripping Force: 0.8 to 1.2 N•Total Stroke: 24 mm•Force Sensing: Current dependent•Supply: 5 V, 1A•Control Signal: PWMRobotic Leech for Pipe Inspection and maintenance at various places.Minimum observable diameter of pipe: 75 mmSpeed: 24 mm/sTotal Weight: 104 gEnclosure: IP54Power: Wired, 10WControl Input: PC Keyboard controlledVertical/Incline Climbing: No	• Supply: 5 V, 1A		
 Gripping Force: 8 N Total Stroke: 60 degrees (capable to pick diameter up to 80 mm) Force Sensing: Current dependent Supply: 5 V, 1A Control Signal: PWM Specifications of Cam Guided Gripper:-1 Gripping Force: 0.8 to 1.2 N Total Stroke: 24 mm Force Sensing: Current dependent Supply: 5 V, 1A Control Signal: PWM Robotic Leech for Pipe Inspection and maintenance at various places. Minimum observable diameter of pipe: 75 mm Speed: 24 mm/s Total Weight: 104 g Enclosure: IP54 Power: Wired, 10W Control Input: PC Keyboard controlled Vertical/Incline Climbing: No 	Control Signal: PWM		
 Total Stroke: 60 degrees (capable to pick diameter up to 80 mm) Force Sensing: Current dependent Supply: 5 V, 1A Control Signal: PWM Specifications of Cam Guided Gripper:-1 Gripping Force: 0.8 to 1.2 N Total Stroke: 24 mm Force Sensing: Current dependent Supply: 5 V, 1A Control Signal: PWM Robotic Leech for Pipe Inspection and maintenance at various places. Minimum observable diameter of pipe: 75 mm Speed: 24 mm/s Total Weight: 104 g Enclosure: IP54 Power: Wired, 10W Control Input: PC Keyboard controlled Vertical/Incline Climbing: No 	Curvilinear jaw Robotic Gripper: -1		
mm) Force Sensing: Current dependent 1 Supply: 5 V, 1A Control Signal: PWM Specifications of Cam Guided Gripper:-1 Gripping Force: 0.8 to 1.2 N Total Stroke: 24 mm Force Sensing: Current dependent Supply: 5 V, 1A Control Signal: PWM Robotic Leech for Pipe Inspection and maintenance at various places. Minimum observable diameter of pipe: 75 mm Speed: 24 mm/s Total Weight: 104 g 1 Enclosure: IP54 Power: Wired, 10W 1 Control Input: PC Keyboard controlled 1	Gripping Force:8 N		
 Supply: 5 V, 1A Control Signal: PWM Specifications of Cam Guided Gripper:-1 Gripping Force: 0.8 to 1.2 N Total Stroke: 24 mm Force Sensing: Current dependent Supply: 5 V, 1A Control Signal: PWM Robotic Leech for Pipe Inspection and maintenance at various places. Minimum observable diameter of pipe: 75 mm Speed: 24 mm/s Total Weight: 104 g Enclosure: IP54 Power: Wired, 10W Control Input: PC Keyboard controlled Vertical/Incline Climbing: No)	
 Supply: 5 V, 1A Control Signal: PWM Specifications of Cam Guided Gripper:-1 Gripping Force: 0.8 to 1.2 N Total Stroke: 24 mm Force Sensing: Current dependent Supply: 5 V, 1A Control Signal: PWM Robotic Leech for Pipe Inspection and maintenance at various places. Minimum observable diameter of pipe: 75 mm Speed: 24 mm/s Total Weight: 104 g Enclosure: IP54 Power: Wired, 10W Control Input: PC Keyboard controlled Vertical/Incline Climbing: No 	• Force Sensing: Current dependent	1	
 Control Signal: PWM Specifications of Cam Guided Gripper:-1 Gripping Force: 0.8 to 1.2 N Total Stroke: 24 mm Force Sensing: Current dependent Supply: 5 V, 1A Control Signal: PWM Robotic Leech for Pipe Inspection and maintenance at various places. Minimum observable diameter of pipe: 75 mm Speed: 24 mm/s Total Weight: 104 g Enclosure: IP54 Power: Wired, 10W Control Input: PC Keyboard controlled Vertical/Incline Climbing: No 			
Specifications of Cam Guided Gripper:-1 Gripping Force: 0.8 to 1.2 N Total Stroke: 24 mm Force Sensing: Current dependent Supply: 5 V, 1A Control Signal: PWM Robotic Leech for Pipe Inspection and maintenance at various places. Minimum observable diameter of pipe: 75 mm Speed: 24 mm/s Total Weight: 104 g Enclosure: IP54 Power: Wired, 10W Control Input: PC Keyboard controlled Vertical/Incline Climbing: No			
Robotic Leech for Pipe Inspection and maintenance at various places. Minimum observable diameter of pipe: 75 mm Speed: 24 mm/s Total Weight: 104 g Enclosure: IP54 Power: Wired, 10W Control Input: PC Keyboard controlled Vertical/Incline Climbing: No	 Total Stroke: 24 mm Force Sensing: Current dependent Supply: 5 V, 1A 		
Speed: 24 mm/s Total Weight: 104 g Enclosure: IP54 Power: Wired, 10W Control Input: PC Keyboard controlled Vertical/Incline Climbing: No			
Total Weight: 104 gEnclosure: IP54Power: Wired, 10WControl Input: PC Keyboard controlledVertical/Incline Climbing: No			
Enclosure: IP54 Power: Wired, 10W Control Input: PC Keyboard controlled Vertical/Incline Climbing: No	•		
Power: Wired, 10W 1 Control Input: PC Keyboard controlled Vertical/Incline Climbing: No			
Control Input: PC Keyboard controlled Vertical/Incline Climbing: No		1	
Vertical/Incline Climbing: No			
Vendor Has to take care of Delivery & Installation			
	Vendor Has to take care of Delivery & Installation		

Technical Specification for Robotics and Automation for Electric Mobility

Sr. no.	Technical Specification	
	1. <u>Technical Specification for Articulated Robotic ARM:</u> Robotic arm for pick and place operations:	<u>1</u>
	a. Number of Axes: 6;	
	b. Pay load capacity: 2kg or more;	
	c. Power supply: 230V AC, 50/60 Hz, 5A;	
	d. Work envelope – 500 mm in 3600;	
	e. Gripper equipped	
	 f. Above robot arm should be provided with all necessary cables, hardware, software and workstation. g. Enclosure Rating: IP54 Repeatability: +/- 0.1 mm 	
	• Accuracy: +/- 0.1 mm	
	• Cable Length: 3 m or 6 m	
	• Outer Body Material: Nylon	
	 Structural Chassis: Hybrid Aluminum and Steel 	
2	MAZE Robot equipped with Artificial Intelligence understanding of Track Path. The Atomized vehicle which runs on Arduino based can be further	5
	The vendor has to supply with Track, complete Platform	
	The Provision of Vehicle for IOT need to be available.	
3	Li-ion Cell Test Bench & Demo for Testing & Aging	1
	The Demo Setup Should consist	
	 Rack frame for minimum, charge of Six Cell at a time The Charging station should be equipped with back of One hour post power failure The Lead cell for aging to be provided by vendor The setup should be portable and need to carry for other locations. 	
4	Electric Robotic Charger Setup	1
	Robotic Charger Setup Charger capacity: 0.5 kW or more Type of robot: SCARA or Articulated type Degrees of freedom: 4 or more Automatic localizing and plugging	

Sr. No.	Descri	ption	QTY
1		ation Lab Learning Equipment	
	٠	Line Following Robot	1
	٠	Object Counter with Conveyor	1
	•	Distance Measurement by Ultrasonic Sensor	1
	•	Automatic Fan Switching - Integration of Sensor with Controller for	1
		Environmental Condition	1
	•	Digital Dice	1
	•	Object Counter	1
	•	Two-wheel Balancing Robot / Self Balancing robot	1
2	•	Soldering Station	
	•	Soldering Gun	
	•	Hot Air Gun	2
	•	Soldering wire & flux	2
	•	Soldering stand	
	•	Wire cutter & stripper	
3	•	Manufacturing Station for Robotics	
	•	Vice – 2	
	•	Bosch Power Tools	1
	•	C – Clamp	
	•	Drilling Station	
4	•	Safety Equipment's	
	•	Hand Gloves & Goggles,	
	•	Anti-Static Wrist Strap	1
	•	Fire Extinguisher	
5	•	ECG Machine	
	•	Light weight, small size and capable of simultaneous acquiring all 12	
		channels of ECG in Real time.	
	•	Operates on commonly available rechargeable mobile battery.	1
	•	Can record ECG of multiple patients in single recharge.	
	•	Lead Fail Alarm to indicate improper lead connection.	
	•	No special mobile application required for viewing reports.	
6	•	Experienced Technical Resource for a Year	
	٠	For robotics Development & Training, covering all the Mechanical,	
		Electronics & Software application.	1
	•	The training would be based on Build Operate Transfer.	
	•	Key responsibility will be Robotics Innovation	

ANNEXURE Technical Specification for Robotics Laboratory

	Publication on Research Paper and	
	 Robotics Product Patent Development. 	
	Theory & practical's	
7	Furniture and Fittings reguired for Robotic Lab with Poster & Flex for renovating the Lab	1
8	Training & Installation, Transpiration, Delivery	1

Technical Specifications Electric Power Train Test Bench

Sr. no	Technical Specifications	QTY
1	Electric Power train Test bench & Demo Setup	1
	Battery	
	capacity: 3 kWh or more	
	Voltage: 48 V	
	Type: Li-ion	
	BMS: With BMS	
	Motor	
	Power: 1 kW or more	
	Type: BLDC	
	Voltege: 48 V	
	Charger:	
	Capacity: 0.5 kW	
	Gearbox & Drivetrain:	
	Gearbox with wheel setup	
	Dynamometer:	
	Dynamometer with torque and rpm measurement setup	
	Input power measurement setup	
	Charges standard damag	
	Charger standard demos	
	Types of chargers: 1) CHAdeMO	
	2) GB/T	
	3) COMBO	
	Charger minimum rating: 0.5 kW	
	Electric Motor Testbench – 1(each)	
	1) IPM Motor Testbench	
	a. Power rating: 0.5 kW or more	
	b. Driver/Controller: With DC 48 V input Driver	
	c. Dynamo: RPM and Torque measurement	
	2) BLDC Motor Testbench	
	a. Power rating: 0.5 kW or more	
	b. Driver/ Controller: With DC 48 V input Driver	
	c. Dynamo: RPM and Torque measurement	
	3) Induction Motor Testbench	
	a. Power rating: 0.5 kW or more	
	b. Driver/ Controller: With DC 48 V input Driver	
	c. Dynamo: RPM and Torque measurement	

ANNEXURE Technical Specifications Li-Ion Test Setup

Sr. No.	Technical Specifications Li-Ion Test Setup	QTY
1	Li-ion Cell Testing Cell testing machine with various rates of charge and discharge Li-ion Cell Testing/Inspection Minimum number of cell capacity: 4 Rack Mounted Cells Systems with different sizes IR Sensor for position with accurate accuracy TriWires for complete Setup Power Supply 230 V AC Auto manual Switch. Types of Test: 1) Normal Charge 2) Normal Discharge 3) Overvoltage charging 4) Over current discharge Temperature monitoring Systems Inbuild Energy Meter Seven Segment Display Unit Indicators: Charge and discharge completion indicators Robust Body Construction	1
2	 Li-ion Cell Aging Li-ion cell aging and lifecycle testing machine with various rates of charge and discharge, lifecycle testing Li-ion Cell Aging Minimum number of cell capacity: 4 Types of tests: Load testing Performance cycle testing life-cycle testing life-cycle testing Cell Capacity measurement The aging should be derived through Computer systems Post aging Emergency Switch, Individual on Off Switch Inbuild Voltmeter & Ammeter 	1
3	Training & Installation, transportation, Delivery need to be provided by vendor	1

Sr	Component	Description
No	name	
1	ESP WROOM 32	Hybrid module with Wi-FI & Bluetooth.
	IOT module	High level of integration. Ultra-low power management.
		4 MB Flash.
		Current – Receiving: 80 mA.
		Supply Voltage: 2.2 V ~ 3.6 V.
		Data Rate: 54 Mbps. Frequency: 2.4 GHz.
2	Smart relay - wifi	Can use with AC-240Volts or DC voltages such as 12V / 24V / 48V, WiFi
	switch	enabled
3	Multi-channel	4-channel relay output modules, relay output contacts 250A 10A Input IN1, IN2,
	relay board	IN3, IN4, the signal line LOW effective VCC, GND power input, can relay a separate power supply relay power input of JD-VCC
4	Sensor kit with shield	
		Line Sensor
		Sound sensor
		Touch sensor
		Gas sensor
		Joystick potentiometer sensor
		Light sensor
		Magnetic switch
		Moisture sensor
		PIR miotion sensor
		Temperature sensor
		Humidity sensor
		Infrared sensor
		3 Axis Digital accelerometer & shield for arduino
		Turbidity sensor
		PpH sensor board
		Heart beat sensor
		Water flow sensor
		Water level sensor
		Current sensor
5	Arduino Uno	Arduino Uno is a microcontroller board based on the ATmega328P (datasheet)

ANNEXURE Technical Specification for IoT Laboratory

		It has 14 digital input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz quartz crystal, a USB connection, a power jack, an ICSP header and a reset button
6	Particle Maker Kit	If you're new to the world of hardware, don't panic—the Maker Kit has everything you need to level up from hacker zero to hardware hero In addition to a shiny new Photon, the Particle Maker Kit includes all the components and accessories you need to start building simple Internet-enabled projects The Maker Kit comes with enough jumper wires, LEDs, resistors and more to make sure you can can build multiple different types of projects It also comes with a super-neat project carrying case so you can put tidy up your workspace when you're done building
7	Internet Button	The Internet Button includes a Photon, which can also be easily removed and used for other projects, a USB-micro cable and a removable plastic cover Quickly start playing with LEDs, multiple buttons, an accelerometer and more without any wires or soldering On the firmware side, custom libraries are available to make programming your projects quick and beautiful The Internet Button is not only an easy way to get started on the Internet of Things, it's also a clean and simple way to start building your own prototypes
8	DC Motors & shield kit	DC geared motor 100RPM - 2
		DC Motor shield - 1
		Chassis - 1
		Castor wheel - 1
		70mm tyres - 2
9	Servo motors & shield kit	DC servo motor - 2
		Servo motor shield - 1
10	GPS tracker Kit	The Asset Tracker Kit contains all of the hardware you need to build a GSM + GPS location tracker for your most prized possessions In addition to a GPS Shield and Electron, the Asset Tracker Kit comes with a weatherproof enclosure, so it'll keep your electronics safe from the dust, dirt, and moisture of the great outdoors
11	Battery section	12V 7000Ah lead acid battery
		5V 5000mAh power bank
12	Hardware essentials kit	Digital Multimeter - 1
		Bluetooth module - 2
		WiFi module - 2
		LED Bulbs + holder - 2,
		DC / AC fans - 1 each,
		Water pump 12v - 1,

		Solenoid valve - 1,
		12V 2A adaptor - 2
		Screw driver - 1
		Stripper - 1
		Soldering gun - 1
		LCD 16x2 - 1
		Max 7219 8x8 Dot matrix display - 1
14	Smoke Detector Kit	MQ2 Sensor, ESP8266, PCB module, Power supply
15	Home Automation Kit	Relay modules, PCB module, PiO, Power supply
16	Smart Locking Systems Kit	Bluetooth module, PCB module, Relay module, ICs, Electro-magnetic lock.
17	IoT Starter Kit	 Hardware kit comprising of analog and digital inputs One waterproof temperature sensor On-board ADC, Raspberry pi microcontroller Software and OS preinstalled Display USB cable, Power supply adapter
18	Consumables kit	Solder metal (50gm)
		Nut & bolts set
		2 Pin AC plugs pair
		Wires - 20m
		General Purpose PCB
		Resistor pack
		Capacitor pack
		Connector pack
		LED pack
		IC pack
		Insulation Tape

Specification for Structural Analysis and Optimization Framework

Sr. No.	Description	
1.	The vendor should deliver:	
	Commercial Grade R&D License	
	• 5-Users	
	Paid-Up License, M &S for 1 Year	
	64-bit, Windows, Node Locked / Floating	
	The software package must provide the following tools:	
2.	Design Engineers Concept Design and Optimization Tool should have the following	
	Accurate auto mesh	
	Topology / Topography / Gauge / Lattice Optimization.	
	• Polynurbs : Polygonal modelling capabilities - NURBS from polymesh data.	
	• Motion Analysis for extracting forces in the mechanism for Optimization or	
	FEA.	
	Manufacturing Feasibility at product design stage for Castability &	
	Formability.	
	Design for additive manufacturing to create more self-supporting	
	structures	
	• Export lattice designs in a. stl file format for 3D printing	
	Assign loads to load cases and import / export design loads in .csv file	
	Manufacturing & Shape Controls Capability: single draw, split draw,	
	extrusion, symmetry, cyclic symmetry constraints for Topology concept	
	generation. Stamping feasibility to check the thinning distribution and	
	potential formability issues cracks and wrinkles.	
	Direct modeling capability-Sketch tools like lines, Geometry tools-	
	mirroring, scaling, revolving, push/pull, tangency and perpendicularity.	
	Geometry export capability-IGES, PARASOLID, STEP, STL.	
	Add customized material to the library	
	Automatic mid surface generation	
	Partition tool to be available for dividing a part into design and non-design regions by calacting a bala, packet, or fees to effect.	
	regions by selecting a hole, pocket, or face to offset.	
	Bead pattern visualization to know the bead boundaries	
	Perform FEA on optimized concept of sheet metal/solid components.	
	 Contact Tools to find neighbouring parts and designate whether the type of contact to be bonded (contacting (baye no contact) 	
	of contact to be bonded/contacting/ have no contact	

	Eastener and joints tools to add bolts, screws, pins, or sliding pins
	Grounded bolts, grounded screws, grounded pins and grounded sliding
	pins that can act as supports in load cases
	 Joints tool to be available to identify and create hinge, cylindrical,
	translational, ball and socket, planar
	*.FEM input file format should be generated for:Topology & Topography
	FE analysis
	Capability to create final output files using polyNURBS- Ready for 3d
	printing/Manufacturing
3	Meshless Structural and dynamic analysis solver should consist of the below
	features
	 No geometry simplification and meshing is required to solve structural and dynamic analysis
	Meshless Structural And Dynamic Solver to analyse complex parts and
	assemblies
	High Capacity – Large Assemblies, Complex Parts
	Multi-Pass Adaptive Process, Smart Functions
	Material Properties:
	Isotropic Material
	Incompressible Material
	Elastoplastic with NL stress vs strain curves Material
	Rigid Material
	User extensible Material
	Linear statics, modal, thermal, coupled thermal-stress, material nonlinear,
	geometric nonlinear, transient dynamics
	• Connections – bonded, sliding, virtual connectors, welds (spot, laser and
	fillet)
	 Contour plots with displacements, stress & strains Deformed shape animation Max/min labels
	 Point probes
	XY plots Prostion (contact forces)
	 Reaction/contact forces Bolt/nut forces
	Spot weld forces
	 Frequencies and mode shapes Modal participation factors
	 Safety Factors

	• CAD file formats including: CATIA, NX, PTC/Creo, Inventor, Fusion 360,	
	SOLIDWORKS, SolidEdge, Onshape, JT, STEP, VDA, Parasolid, ACIS,	
	PLMXML, CGR, STL	
	Finite Floment Medelling Teel	
	Finite Element Modelling Tool	
	Automated Mesh Generation	
4.	Tetra and hexa meshing of solids	
	Quad and tria meshing of surfaces	
	1D mesh creation for joining parts and contact surfaces	
	Feature Based Meshing	
	Automatically identifies CAD features	
	• Applies template criteria to mesh creation of features, such as cylinders,	
	fillets or holes.	
	Automatic recognition of contact surfaces	
	Eliminates tedious CAD geometry clean-up and removes geometry	
	translation errors	
	Uses templates and captured knowledge to generate accurate meshes per	
	analysis type, such as Stress NVH, Acoustic, Fatigue	
	Simplified model and assembly modifications	
	Part replacement	
	Add or modify ribs within solid models	
	Change fillet/cylinder/hole properties	
	Local model morphing	
	Automated templates	
	Bolt modelling	
	Gasket, bearing loads, and joint modelling	
	Mass property idealization	
	External material and property based connections	
	Contact detection and modelling	
	A finite element pre-processor with the broadest set of direct interfaces to	
	commercial CAD and CAE systems.	
	It should provide:	
	Access to a variety of mesh generation capabilities, For 2D and 3D model	
	creation.	
	Automeshing module like High Fidelity Meshing, Surface Meshing, Solid	
	Meshing, and Batch Meshing	

 BatchMesher to automatically generate high-quality finite elements meshes; provides user specified control over meshing criteria a geometry clean-up parameters as well as the ability to output customized model file formats 	nd
Composite Design and Analysis Solver: • Composite solver materials database, with properties for 100	0+
 commercial material systems Covers layered composite structures from preliminary design to analysis details 	of
 Composite solver integration enhances composites pre- and po processing. 	st-
 Composite material data is readily available for (initial) design purposes Composite solver allows evaluation and selection of materials 	
 considering the materials as part of an actual composite structure Composite solver lay-up design user environment to quickly create a modify lay-ups 	nd
• Export function from Composite solver transfers the data reliably a effortlessly, without the risk of transcription errors	
Gain insight on failure margins, critical layer and failure mode informati all from within Post processing environment	
 Additional knowledge on the laminate behaviour Composite solv through-the-thickness plots 	
The license should provide a structural analysis tool developed specifically rapidly evolving design processes.	for
The following simulation types should be supported:	
Linear statics, modal, nonlinear statics (material & geometrical), thermal, coupl thermal-stress, linear dynamics (time, frequency and random response).	ed
The license provides a dedicated tool for multi-disciplinary design exploration to	loo
 used for parameter screening, optimization, reliability and stochastic studies. The tool should automatically create intelligent design variants, manages rule 	
 The tool should automatically create intelligent design variants, manages rul and collects data. 	115,
 The tool must have Design of Experiments (DOE) methods: 	
 Full factorial 	
 Plackett-Burman 	
 Central composite design 	
 Modified Extensible Lattice Sequence (MELS) 	

	o Hammersley	
	o D-Optimal	
	 Fractional factorial 	
	o Box-Behnken	
	The tool must provide following optimization methods to solve different types of	
	design problems including multi-objective and reliability/robustness based design	
	optimization.	
	Adaptive response surface method (ARSM)	
	Sequential quadratic programming	
	Genetic algorithm	
	System Reliability Optimization (SRO)	
	Sequential optimization and reliability analyses (SORA)	
	Single loop approach	
	Method of Feasible Directions (MFD)	
	Global response surface method (GRSM)	
	Multi-objective genetic algorithm	
	ARSM based SORA	
	User-defined optimizer	
7.	A finite element pre-processor with the broadest set of direct interfaces to	
	commercial CAD and CAE systems.	
	It should provide:	
	• Access to a variety of mesh generation capabilities, For 2D and 3D model	
	creation.	
	Automeshing module like High Fidelity Meshing, Surface Meshing, Solid	
	Meshing, and Batch Meshing	
	BatchMesher to automatically generate high-quality finite element meshes;	
	provides user specified control over meshing criteria and geometry clean-up	
	parameters as well as the ability to output to customized model file formats.	
	Explicit structural analysis tool for highly non-linear problems under dynamic	
	loadings.	
	It should provide:	
	Comprehensive material libraries. The material laws and failure models for	
	concrete, foam, rubber, steel, composites, biomaterials, and more.	
8	The solution types should include:	
	 Nonlinear explicit dynamic structural analysis 	
	 Nonlinear implicit structural analysis 	
	• Euler, Lagrange and Arbitrary Euler-Lagrangian (ALE) formulations	

 Smoothed-Particle Hydrodynamics (SPH) 	
 Finite Volume Method (FVM) based airbag simulation. 	
 XFEM for crack propagation in multi-layer shells. 	
 Advanced Mass Scaling for quasi-static problems, drop and im 	npact
tests, to increase the time step and by the way reduce the el	apse
time significantly without degradation of the accuracy.	
 Sub-Modeling for local design of components or sub-structur 	res.
 Hot-forming simulation capabilities 	
9. Structural analysis tool for linear and nonlinear problems under static and dyn	amic
loadings.	
It should support and include:	
A comprehensive range of physics for powertrain analysis.	
 Solutions for heat transfer, bolt and gasket modeling, hyper-el 	lastic
materials, and efficient contact algorithms.	
Integrated Fast and Large-Scale Eigenvalue Solver with built-in featu	re of
Automated Multi-level Sub-structuring Eigen Solver (AMSES) that	can
rapidly calculate thousands of modes with millions of degrees of freed	dom.
Advanced functionality for NVH analysis including one-step TPA (Trail	nsfer
Path Analysis), Powerflow analysis, model reduction techniques (CMS	and
CDS super elements), design sensitivities, and an ERP (Equivalent Radi	iated
Power) design criterion to optimize structures for NVH.	
It should provide following Analysis features:	
Stiffness, Strength and Stability	
Linear and nonlinear static analysis with contact and plasticity	
Large displacement analysis with hyperelastic materials	
Fast contact analysis	
Buckling analysis	
Noise and Vibrations	
Normal modes analysis for real and complex eigenvalue analysis	
Direct and modal frequency response analysis	
Random response analysis	
Response spectrum analysis	
Direct and modal transient response analysis	
 Preloading using nonlinear results for buckling, frequency response, 	, and
transient analysis	
Coupled fluid-structure (NVH) analysis	
AMSES large scale eigenvalue solver	

•	Fast large scale modal solver (FASTFR)	
•	One-step transfer path analysis (PFPATH)	
•	Radiated sound analysis	
•	Heat Transfer Analysis	
•	Linear and nonlinear steady-state analysis	
•	Linear transient analysis	
•	Coupled thermo-mechanical analysis	
•	One-step transient thermal stress analysis	
•	Contact-based thermal analysis	
•	Kinematics and Dynamics	
•	Static, quasi-static, and dynamic analysis	
•	Loads extraction and effort estimation	
•	Optimization of system and flexible bodies	
Structur	ral Optimization	
•	Topology, topography, and free-size optimization	
•	Topology optimization for 1D, 2D and 3d Elements: Manufacturing	
	constraints like Minimum member size, maximum member size, Draw	
	direction including split and single draw, Extrusion constraints including	
	twist and no twist, Pattern grouping including 1 Plane symmetry, 2 plane	
	symmetry, 3 plane symmetry, uniform, cyclic, cyclic 1 plane symmetry and	
	Pattern repetitio	
•	Topography optimization: Manufacturing constraints including bead width,	
	bead height, bead angle, draw direction with normal to elements and	
	direction as per global or user defined directions. Pattern grouping includes	
	linear, circular, planar, radial 2d, cylindrical, radial2d+Linear, radial3d,	
	1plane symmetry, 2 plane symmetry, 3 plane symmetry, cyclic, cyclic-1	
	plane, cyclic linear, cyclic radial, cyclic linear + radial, Bounds, Pattern	
	repetition.	
•	Free-size optimization: Manufacturing constraints including minimum	
	member off, minimum thickness off, maximum thickness off, Ply thickness,	
	Ply Percentage, Ply manufacture, Ply balancing, Ply constant, Ply drop off,	
	Pattern grouping including 1 Plane symmetry, 2 plane symmetry, 3 plane	
	symmetry, cyclic, cyclic 1 plane symmetry, Pattern repetition.	
•	Size optimization, discrete size optimization	
•	Composite Size: Manufacturing constraints including minimum thickness	
	off, maximum thickness off, Ply thickness, Ply Percentage, Ply manufacture,	
	Ply balancing, Ply constant, Ply drop off	

	 Composite shuffle : Manufacturing constraints include Pairing constraints include same and reverse, successive plies, core number of plies, cover number of plies Shape optimization : Manufacturing constraints include moving limit, Single, multiple and nonlinear design variables, discrete shape variables Free-shape optimization : Manufacturing constraints include Unconstrained, Max grow blank and max shrink blank direction, smoothing method like optimized for speed, optimized for accuracy, number of smoothing layers, number of grids in transition zone, maximum moving vector, single draw direction, extrusion direction include global and user defined direction, 1 plane pattern grouping, grid con constraint type like fixed, vector and planar, side con constraint like manual and blocks and barrier mesh Design and Optimization of Laminate Composites Gauge optimization for shell and composites with discrete design variable Design and Optimization of Additively Manufactured Lattice Structures: Manufacturing constraints include clean, porosity high, medium and low. 	
	 Lattice types include, hexahedra, pyramid, tetrahedral, pentahedral. Ply shapes (phase 1), optimal number of plies (phase 2) and the optimal ply 	
	stacking sequence (phase 3)	
	Equivalent static load method	
	Multi-model optimization	
10	Material Characterisation solver	
	Forward homogenization and inverse optimization technologies	
	• Built-in parametric unit cells for unidirectional, woven, chopped, and	
	particulate fiber composites	
	Parametric Built-In FEA Models	
	Advanced Continuum Damage	
	All Presented Material Characterisation solver Comparisons vs. Measured	
	Data from NIAR NCAMP Reports	
	Void content, microcracks, interface/interphase properties	
	Forward homogenization and inverse optimization stochastic simulation	
	Probability distribution function for the homogenized macro-scale	
	properties	
	Micro-scale geometry and constitutive properties	
11	Manufacturing Simulation	
	Sheet Metal Forming Simulation Tool	

ГГ	
•	
	feasibility analysis and cost estimation.
•	
•	
C	
0	, ,
0	5
C	Define stamping direction
C	Define constraints
C	Run analysis, visualize result
C	Blank fit and nesting
•	Geometry tools for product design and analysis
0	
0	Solid modeler
0	Boolean tools
0	Geometry cleanup tools
0	Midsurface extraction
0	Feasibility check for regular and tailor welded parts
0	Feasibility check for single and double attached manufacturing scenarios.
0	Option to define arbitrary stamping direction.
0	Ability to capture detailed process conditions: pins, blank holder force,
	drawbeads.
0	Built in material database based on SAE standard with option for user
	database to manage own materials
•	Complete Nesting solution Accurate blank shape prediction.
0	Option to add additional material to account for addendum.
0	Nesting for transfer die forming with blank fit option to standard shapes:
	rectangle, parallelogram, trapezoidal, miter, chevron and sweep.
0	Nesting with one-up, two-up and mirror layout for progressive die
	forming with standard carrier options: single, central, nested double-
	sided, double-sided and central and double-sided and nested.
Castir	ng Process Simulation Solver
•	Automatic mesh Generation in FE
•	One-click geometry generation of casting components
	Geometry modelling capability to create entire shot model (gate, runner,
	mold, risers, chillers)

	l · · · · · · · · · · · · · · · · · · ·	
	Casting defects such as air entrapment, shrinkage porosity, cold shuts,	
	mold degradation	
	Gravity, Die, High Pressure, Low Pressure, Investment and Tilt casting	
	templates	
	Bi-phasic Finite Element formulation captures filling and solidification	
	process	
12	Post Processing Tool	
	Complete visualization environment for FEA, CFD, and multi-body system	
	simulation data.	
	A multi-window, multi-page environment: To check for correlations	
	between two models or simulation and reality, results can be overlaid with	
	a model or video within the same window.	
	Results Math is a powerful tool to generate new results from existing	
	simulations by using mathematical expressions or external scripting	
	languages.	
	• Time consuming result manipulation tasks can be performed in batch file.	
	• All post-processing sessions can be stored in a session file or a report	
	template.	
	Session files help to reopen a complete session spanning across multiple	
	pages and applications.	
	• Tool enables users to share CAE results within a 3D web environment or	
	Microsoft PowerPoint using compact file.	
	Users can create custom model views such as section cuts and exploded	
	views by combining functionality from Tool's comprehensive post-	
	processing tool and utility set	
	• Different types of animations like Animations Contours (Scalar & Tensor),	
	Vector plots, dynamics animations with flex-bodies are supported.	
	Tensor plots, Deformation plots, CFD streamline plots, Deformed	
	animations, Linear animations, Modal animations, Transient animations,	
	Multi-body	
	Tool saves 3-D animation results in compact format	
	• Visualization environment for finite element analysis, CFD and multi-body	
	system data	
	Data Analysis and Graphical Tool	
	• Eliminates repetitive tasks. Plot macros capture and automate common	
	math expressions.	
	Data Analysis and Graphical Tool	

	Plot macros capture and automate common math expressions.
	Report templates can capture and automate the building of entire pages of data
	plots. These can be reused for model variations and similar models.
	• A library of over 200 mathematical functions is included and user defined math
	functions can be added.
	• Tool supports units starting from data import all the way through predefined
	functions. Conversion between units is possible.
	Automation tools for efficient data analysis and report generation
	Contains a sophisticated math engine for performing complex mathematical
	operations or building custom math expressions
13	The vendor or OEM should conduct Faculty Development Programs (3-days each)
	on the following domains:
	 Meshing, Pre-processing for Finite Element Analysis
	 Linear & Non-Linear Analysis
	 Concept Level Optimization
	o Structural Optimization
	 Meshless Analysis
	 Concept Design
14	The vendor or OEM should provide a free Training Programs, for various domains of
	engineering.
	• The training programs should be conducted for total of 8 days in a calendar
	year.
	• Under this free training program, the vendor or OEM should have a
	dedicated website to register for such trainings.
	• The training classes should be at vendor/OEM's regional offices as well as
	university.
	• Some of the training that vendor/OEM should offer are:
	 Concept Design
	o Optimization
	 Structural Analysis
15	The vendor/OEM should provide certification program for the students, to improve
	their knowledge and productivity.
	Students can take free certification through the online portal of the OEM of the
	software tool.
	The certification program should be on:
	Pre-processing and meshing
	Optimization Examinations
	Pre-processing and meshing

 Design Exploration, Study and Optimization The OEM/vendor should provide an online Learning Library to offer videos and resources that can be used to build the skills of the students. The vendor/OEM should provide the teaching material on the tools as mentioned below. PPTs (for your presentations while teaching in the classroom) Reading material (PDFs) for your students' self-learning Tutorials - Handouts (PDFs) for your students Model Files to practise The vendor/OEM should provide Internship Opportunity of eligible students; subject to their terms and conditions. The vendor/OEM should conduct tests and interviews of shortlisted students, once a year, to select students either for internship or as trainees. Subject to selection criteria. The selection should be based on eligibility and positions being available at OEM.
resources that can be used to build the skills of the students.17The vendor/OEM should provide the teaching material on the tools as mentioned below.• PPTs (for your presentations while teaching in the classroom) • Reading material (PDFs) for your students' self-learning • Tutorials - Handouts (PDFs) for your students • Model Files to practise18The vendor/OEM should provide Internship Opportunity of eligible students; subject to their terms and conditions. The vendor/OEM should conduct tests and interviews of shortlisted students, once a year, to select students either for internship or as trainees. Subject to selection criteria.
17The vendor/OEM should provide the teaching material on the tools as mentioned below.17PPTs (for your presentations while teaching in the classroom) • Reading material (PDFs) for your students' self-learning • Tutorials - Handouts (PDFs) for your students • Model Files to practise18The vendor/OEM should provide Internship Opportunity of eligible students; subject to their terms and conditions. The vendor/OEM should conduct tests and interviews of shortlisted students, once a year, to select students either for internship or as trainees. Subject to selection criteria.
below.• PPTs (for your presentations while teaching in the classroom)• Reading material (PDFs) for your students' self-learning• Tutorials - Handouts (PDFs) for your students• Model Files to practise18The vendor/OEM should provide Internship Opportunity of eligible students; subject to their terms and conditions.The vendor/OEM should conduct tests and interviews of shortlisted students, once a year, to select students either for internship or as trainees. Subject to selection criteria.
 PPTs (for your presentations while teaching in the classroom) Reading material (PDFs) for your students' self-learning Tutorials - Handouts (PDFs) for your students Model Files to practise 18 The vendor/OEM should provide Internship Opportunity of eligible students; subject to their terms and conditions. The vendor/OEM should conduct tests and interviews of shortlisted students, once a year, to select students either for internship or as trainees. Subject to selection criteria.
 Reading material (PDFs) for your students' self-learning Tutorials - Handouts (PDFs) for your students Model Files to practise 18 The vendor/OEM should provide Internship Opportunity of eligible students; subject to their terms and conditions. The vendor/OEM should conduct tests and interviews of shortlisted students, once a year, to select students either for internship or as trainees. Subject to selection criteria.
 Tutorials - Handouts (PDFs) for your students Model Files to practise 18 The vendor/OEM should provide Internship Opportunity of eligible students; subject to their terms and conditions. The vendor/OEM should conduct tests and interviews of shortlisted students, once a year, to select students either for internship or as trainees. Subject to selection criteria.
 Model Files to practise 18 The vendor/OEM should provide Internship Opportunity of eligible students; subject to their terms and conditions. The vendor/OEM should conduct tests and interviews of shortlisted students, once a year, to select students either for internship or as trainees. Subject to selection criteria.
18 The vendor/OEM should provide Internship Opportunity of eligible students; subject to their terms and conditions. The vendor/OEM should conduct tests and interviews of shortlisted students, once a year, to select students either for internship or as trainees. Subject to selection criteria.
to their terms and conditions. The vendor/OEM should conduct tests and interviews of shortlisted students, once a year, to select students either for internship or as trainees. Subject to selection criteria.
The vendor/OEM should conduct tests and interviews of shortlisted students, once a year, to select students either for internship or as trainees. Subject to selection criteria.
a year, to select students either for internship or as trainees. Subject to selection criteria.
criteria.
The selection should be based on eligibility and positions being available at QEM
19 The vendor/OEM should Conduct two Workshops in a year on emerging topics like:
Concept Design
Simulation Driven Design
Design for Manufacturing
Light Weighting
• The cost and infrastructure for conducting workshop to be borne by the
institute. The vendor/OEM should to provide expertise.
The vendor/OEM should arrange domain expert speakers for these
workshops, from OEM & Industry, subject to availability.
The workshops should include latest updates & case studies in Simulation
for Engineering domain covering varied topics like, Crash/Safety, CFD for
improved product design, Design for 3D Print, Composites, Manufacturing
Simulation, etc
20 The OEM should provide access to an "online portal" for "Industry-Institute"
collaboration, and accessible to institute, select students and to connect with
registered companies on the portal.
This portal should provide opportunity to connect with the participating companies
on the program and attend events from Industry experts sharing their specialized
knowledge.

Specification for CFD and Thermal Management Application

Sr. No.	Description	
2.	The vendor should deliver:	
	Commercial Grade R&D License	
	• 5-Users	
	Paid-Up License, M &S for 1 Year	
	64-bit, Windows, Node Locked / Floating	
	The software package must provide the following tools:	
2.	A general-purpose finite element-based Computational Fluid Dynamics (CFD) flow	
	solver.	
	This tool should provide	
	• Full set of physical models for flow, turbulence, immiscible and heat transfer	
	simulations.	
	Solutions for both transient and steady-state simulations	
	It should provide following capabilities:	
	Fully coupled pressure/velocity solver for all supported flow regimes	
	Fully coupled temperature/flow solver for highly buoyant flows	
	Heat Transfer and Radiation Modeling	
	• The tool should support a full set of features for analysing heat transfer in	
	both solid and fluid mediums.	
	Supported features should include:	
	Conjugate heat transfer	
	Natural convection	
	Enclosure radiation	
	Solar radiation	
	Thermal shells for modeling thin solids	
	Simplified heat exchanger models	
	Multiphysics Capabilities	
	Rigid body dynamics coupling	
	Practical Fluid/Structure Interaction (P-FSI)	
	Direct-Coupling Fluid/Structure Interaction (DC-FSI)	
	Direct-Coupled with Multi-body dynamics software MotionSolve	
	Complete selection of turbulence modeling capabilities. Available RANS models	
	should include:	
	Spalart-Allmaras	

•	SST
•	k-ω, BSL k-ω
•	Realizable k-ε, RNG k-ε, Standard k-ε
For hig	gher resolution transient simulations, the tool should support the following
model	s:
•	Spalart-Allmaras based Detached Eddy
•	Simulation (DES and DDES)
•	SST based (DDES and Zonal DES)
•	Dynamic coefficient and fixed coefficient
•	Large Eddy Simulation models
For sim	nulations involving turbulent transition, the tool should supports the following
transit	ion
•	models (compatible with Spalart-Allmaras
•	and SST RANS/DES models):
•	γ one-equation model
•	γ-Reθ two-equation model
Extern	al Aerodynamics : The Tool for this application should be capable of the below
Pre-pr	ocessing & geometry editing
•	No surface mesh requirement
•	Generate robust volume mesh from CAD.
•	Short model preparation time
•	Easy part replacement.
•	Case Setup models based on application user interface.
Solver	
•	Lattice Boltzmann based CFD solver.
•	Runs only on NVIDIA Tesla GPUs on Linux OS.
•	LES turbulence model and sophisticated wall modelling.
•	Moving Reference Frame.
•	Fan rotation using MRF
•	Rotating wheel modelling and five belt system
Post-P	rocessing & Data Visualisation
•	Post processing features on client server, parallel and batch scripting.
•	Job management system & remote visualisation.
•	Job monitoring and summary for aero. coefficients, voxels, runtime.
•	Supports sectional and accumulated drag.
•	Remote post processing feature
•	Comparison and detail analysis using various data visualization features.
1	

	Supports animations, iso-surfaces, sections, probes.	
3	Finite Element Modelling Tool	
	Automated Mesh Generation	
	Tetra and hexa meshing of solids	
	Quad and tria meshing of surfaces	
	1D mesh creation for joining parts and contact surfaces	
	Feature Based Meshing	
	Automatically identifies CAD features	
	• Applies template criteria to mesh creation of features, such as cylinders,	
	fillets or holes.	
	Automatic recognition of contact surfaces	
	Eliminates tedious CAD geometry clean-up and removes geometry	
	translation errors	
	Uses templates and captured knowledge to generate accurate meshes per	
	analysis type, such as Stress NVH, Acoustic, Fatigue	
	Simplified model and assembly modifications	
	Part replacement	
	Add or modify ribs within solid models	
	Change fillet/cylinder/hole properties	
	Local model morphing	
	Automated templates	
	Bolt modelling	
	Gasket, bearing loads, and joint modelling	
	Mass property idealization	
	External material and property based connections	
	Contact detection and modelling	
	A finite element pre-processor with the broadest set of direct interfaces to	
	commercial CAD and CAE systems.	
	It should provide:	
	Access to a variety of mesh generation capabilities, For 2D and 3D model	
	creation.	
	Automeshing module like High Fidelity Meshing, Surface Meshing, Solid	
	Meshing, and Batch Meshing	
	BatchMesher to automatically generate high-quality finite element	
	meshes; provides user specified control over meshing criteria and	
	geometry clean-up parameters as well as the ability to output to	
	customized model file formats	

	The license provides a dedicated tool for multi-disciplinary design exploration tool
	used for parameter screening, optimization, reliability and stochastic studies.
	• The tool should automatically create intelligent design variants, manages runs,
	and collects data.
	The tool must have Design of Experiments (DOE) methods:
	• Full factorial
	 Plackett-Burman
	 Central composite design
	 Modified Extensible Lattice Sequence (MELS)
	 Hammersley
	o D-Optimal
	 Fractional factorial
	o Box-Behnken
	The tool must provide following optimization methods to solve different types of
	design problems including multi-objective and reliability/robustness based design
	optimization.
	Adaptive response surface method (ARSM)
	Sequential quadratic programming
	Genetic algorithm
	System Reliability Optimization (SRO)
	Sequential optimization and reliability analyses (SORA)
	Single loop approach
	Method of Feasible Directions (MFD)
	Global response surface method (GRSM)
	Multi-objective genetic algorithm
	ARSM based SORA
	User-defined optimizer
4	Post Processing Tool
	Complete visualization environment for FEA, CFD, and multi-body system
	simulation data.
	A multi-window, multi-page environment: To check for correlations
	between two models or simulation and reality, results can be overlaid with
	a model or video within the same window.
	Results Math is a powerful tool to generate new results from existing
	simulations by using mathematical expressions or external scripting
	languages.
	• Time consuming result manipulation tasks can be performed in batch file.
	<u> </u>

	 All post-processing sessions can be stored in a session file or a report template.
	Session files help to reopen a complete session spanning across multiple
	pages and applications.
	• Tool enables users to share CAE results within a 3D web environment or
	Microsoft PowerPoint using compact file.
	Users can create custom model views such as section cuts and exploded
	views by combining functionality from Tool's comprehensive post-
	processing tool and utility set
	• Different types of animations like Animations Contours (Scalar & Tensor),
	Vector plots, dynamics animations with flex-bodies are supported.
	Tensor plots, Deformation plots, CFD streamline plots, Deformed
	animations, Linear animations, Modal animations, Transient animations,
	Multi-body
	Tool saves 3-D animation results in compact format
	Visualization environment for finite element analysis, CFD and multi-body
	system data
	Data Analysis and Graphical Tool
	• Eliminates repetitive tasks. Plot macros capture and automate common
	math expressions.
	Data Analysis and Graphical Tool
	Plot macros capture and automate common math expressions.
	Report templates can capture and automate the building of entire pages of data
	plots. These can be reused for model variations and similar models.
	• A library of over 200 mathematical functions is included and user defined math
	functions can be added.
	• Tool supports units starting from data import all the way through predefined
	functions. Conversion between units is possible.
	Automation tools for efficient data analysis and report generation
	Contains a sophisticated math engine for performing complex mathematical
	operations or building custom math expressions
5	The vendor or OEM should conduct Faculty Development Programs (3-days each)
	on the following domains:
	 Meshing, Pre-processing for Finite Element Analysis
	o CFD
	 External Aerodynamics

	 Battery Thermal Management 	
6	 The vendor or OEM should provide a free Training Programs, for various domains of engineering. The training programs should be conducted for total of 8 days in a calendar year. Under this free training program, the vendor or OEM should have a dedicated website to register for such trainings. The training classes should be at vendor/OEM's regional offices as well as university. Some of the training that vendor/OEM should offer are: CFD Thermal and Heat Transfer 	
7	The vendor/OEM should provide certification program for the students, to improve their knowledge and productivity. Students can take free certification through the online portal of the OEM of the software tool. The certification program should be on: Pre-processing and meshing Design Exploration, Study and Optimization	
8	The OEM/vendor should provide an online Learning Library to offer videos and resources that can be used to build the skills of the students.	
9	The vendor/OEM should provide the teaching material on the tools as mentioned below. • PPTs (for your presentations while teaching in the classroom) • Reading material (PDFs) for your students` self-learning • Tutorials - Handouts (PDFs) for your students • Model Files to practise	
10	The vendor/OEM should provide Internship Opportunity of eligible students; subjectto their terms and conditions.The vendor/OEM should conduct tests and interviews of shortlisted students, oncea year, to select students either for internship or as trainees. Subject to selectioncriteria.The selection should be based on eligibility and positions being available at OEM.	

11	The vendor/OEM should Conduct two Workshops in a year on emerging topics like:	
	CFD and External Aerodynamics	
	Battery Thermal Management	
	• The cost and infrastructure for conducting workshop to be borne by the	
	institute. The vendor/OEM should to provide expertise.	
	• The vendor/OEM should arrange domain expert speakers for these	
	workshops, from OEM & Industry, subject to availability.	
	• The workshops should include latest updates & case studies in Simulation	
	for Engineering domain covering varied topics like, Crash/Safety, CFD for	
	improved product design, Design for 3D Print, Composites, Manufacturing	
	Simulation, etc	
12	The OEM should provide access to an "online portal" for "Industry-Institute"	
	collaboration, and accessible to institute, select students and to connect with	
	registered companies on the portal.	
	This portal should provide opportunity to connect with the participating companies	
	on the program and attend events from Industry experts sharing their specialized	
	knowledge.	

ANNEXURE

Specification for Motor and Control System Design Framework

Sr. No.	Description	
3.	The vendor should deliver:	
	Commercial Grade R&D License	
	• 5-Users	
	Paid-Up License, M &S for 1 Year	
	64-bit, Windows, Node Locked / Floating	
	The software package must provide the following tools:	
2.	A tool for Math, Scripting, Data Analysis & Visualization	
	• Should provide an environment for doing calculations, manipulating and	
	visualizing data (including from CAE simulations or test results), programming	
	and debugging scripts useful for repeated computations and process	
	automation.	
	• Capable to perform a wide variety of math & linear algebra (including matrix	
	analysis and differential equations), filter signals, fit polynomials through data,	
	approximate or check results from commercial simulation software, perform	
	optimization.	
	• Single product with an Integrated Development Environment (IDE).	
	• It should be based on the Open Matrix Language (OML), and also compatible	
	with Octave and Python.	
	It should have Built-in CAE Data Readers to import, visualize, and	
	manipulate input & output data for CAE tools such as FEA, CFD, etc.	1
3	The license provides a dedicated tool for Multi-Disciplinary System Simulation.	
	High level, Matrix-based Numerical Computing language as well as an	
	interactive and unified programming environment for all types of math.	
	• Multi - programming language (Open matrix language, Python 3.4 &	
	TCL/TK)	
	Extensive 2D & 3D graphing, plotting enabled	
	Build in Debugger which speeds development.	
	Data Readers for CAE (Computer Aided Engineering) Pre-& post processing	
	of data, Custom Applications and GUI to create user interfaces and	
	interactive dialogs.	
	TCL/TK OML bridge to import/export data	1
	Python bridge which helps import Python programs and scripts.	

	 Extensive functional libraries for Controls Systems, Signal Processing, 	
	Optimization, Statistics libraries, Python bridge, CAE Data Reader available	
	within the product	
	 Model based development of hybrid systems, modelling and simulation of 	
	the continuous and discrete dynamical systems & optimization.	
	 Construct hierarchical, parameterized multi-disciplinary models 	
	 Mix Signal-based and Physical (Modelica) components in the same diagram 	
	• Support for Modelica libraries like Mechanical, Electrical, Thermal within	
	the same product. Allows the behavior of the real-world systems with the	
	support for multiple domains like Mechanical and Electrical.	
	Easily extensible, built-in block libraries including library management	
	Model exchange or Co-Simulation through the Functional Mock-Up	
	interface (FMI/FMU) with connectivity to multiple softwares	
	Co-simulation with multi-body dynamics with control systems	
	Co-simulation with Electromagnetic devices with control systems to	
	perform system simulation.	
	Support for Spice Simulation	
	Compile models into executable code	
	Integration with Open Matrix Language (OML).	
	• When modelling large or the complex systems the multiple blocks in the	
	model can be converted in to the single block using the option called Super	
	Block. Masking of the super block is possible.	
	• If the library is not available, End users can also create a custom block with	
	the C/OML/Modelica or Math script and can add to the existing library file.	
	• Simulator provides users with several high performance numerical solvers	
	that accurately and robustly solve dynamic systems including the	
	Continuous, Discrete time and the Event based behaviours.	
	• Model supports with the fixed step size and the variable step size of the	
	function. Leverage the full power of rapidly growing Modelica community	
	Mechanical & electrical; fluids & structures; electromagnetic and thermal	
	effects	
	• Script based Optimization is a powerful mechanism for solving the general	
	optimization problems and constrains.	
	Example models for Hybrid vehicle simulation, motor controls of various types of	
	motors, quarter car/half car suspension, CAE data processing etc.	
L		

	The license should include tool for developing embedded systems, by automatically	
	generating code from block diagram models and transferring to popular controller	
	hardware.	
	The tool should:	
	Generate efficient and compact ANSI C code for dynamic systems involving	
	scaled, fixed-point operations. Tune parameters and monitor real-time	
	data.	
	Simulate dynamic systems including continuous or discrete-time	
	behaviours as well as event-based behaviours.	
	Automatically converts your block diagrams and state diagrams to	
	microcontroller unit (MCU) hardware-ready code.	
	Interactive Hardware-in-the-Loop (HIL) Testing; capability to run plant	
	model on the host computer while the control algorithm runs in real-time	
	on the target MCU, communicating via a Hotlink.	
	Support for Popular Target MCU Hardware; including many industrial-	
	strength devices from Texas Instruments (TI) as well as popular Arduino	
	and Raspberry Pi devices.	
	JTAG hotlink for MCU-in-the-loop verification	
	Automatically generate code directly from system diagram	
	Support rapid prototyping and code generation for Texas Instruments	
	MSP430, C2000 Delfino and Piccolo family, Cortex M3, MCUs, DSPs, and	
	DSCs	
	Visual Real-Time Operating System	
	• Full On-chip Peripheral Support ADC, PWM, GPIO, CAN, SPI, SCI (RS232,	
	UART), I2C	
	Self-Documenting block diagrams make intellectual property easier to	
	reuse	
	• DLL wizard for Custom Block creation using C, C++, Fortran, or Pascal	
	Real-Time Data Monitoring and Acquisition, Exchange data with PCAN USB	
	CAN device	
	• Model discrete behavior using finite state-transition system Create, edit,	
	and simulate state charts, Trigger state actions and transitions Integrated	
	debugger with logging and breakpoints	
	• Example libraries for motor control, multiple microcontrollers addressing	
	automotive and other similar domains with C Code generation capabilities for	
	each example model	
J	1	

4	The license should include tool for developing embedded systems, by automatically	
	generating code from block diagram models and transferring to popular controller	
	hardware.	
	The tool should:	
	Generate efficient and compact ANSI C code for dynamic systems involving	
	scaled, fixed-point operations. Tune parameters and monitor real-time	
	data.	
	 Simulate dynamic systems including continuous or discrete-time 	
	behaviours as well as event-based behaviours.	
	Automatically converts your block diagrams and state diagrams to	
	microcontroller unit (MCU) hardware-ready code.	
	Interactive Hardware-in-the-Loop (HIL) Testing; capability to run plant	
	model on the host computer while the control algorithm runs in real-time	
	on the target MCU, communicating via a Hotlink.	
	Support for Popular Target MCU Hardware; including many industrial-	
	strength devices from Texas Instruments (TI) as well as popular Arduino	
	and Raspberry Pi devices.	
	JTAG hotlink for MCU-in-the-loop verification	
	Automatically generate code directly from system diagram	
	Support rapid prototyping and code generation for Texas Instruments	
	MSP430, C2000 Delfino and Piccolo family, Cortex M3, MCUs, DSPs, and	
	DSCs	
	Visual Real-Time Operating System	
	• Full On-chip Peripheral Support ADC, PWM, GPIO, CAN, SPI, SCI (RS232,	
	UART), I2C	
	Self-Documenting block diagrams make intellectual property easier to	
	reuse	
	DLL wizard for Custom Block creation using C, C++, Fortran, or Pascal	
	Real-Time Data Monitoring and Acquisition, Exchange data with PCAN USB	
	CAN device	
	Model discrete behavior using finite state-transition system Create, edit,	
	and simulate state charts, Trigger state actions and transitions Integrated	
	debugger with logging and breakpoints	
	• Example libraries for motor control, multiple microcontrollers addressing	
	automotive and other similar domains with C Code generation capabilities for	
	each example model	

6	Low Frequency Electromagnetic Tool	
	each example model	
	automotive and other similar domains with C Code generation capabilities for	
	• Example libraries for motor control, multiple microcontrollers addressing	
	debugger with logging and breakpoints	
	and simulate state charts, Trigger state actions and transitions Integrated	
	• Model discrete behavior using finite state-transition system Create, edit,	
	CAN device	
	Real-Time Data Monitoring and Acquisition, Exchange data with PCAN USB	
	• DLL wizard for Custom Block creation using C, C++, Fortran, or Pascal	
	reuse	
	Self-Documenting block diagrams make intellectual property easier to	
	UART), I2C	
	• Full On-chip Peripheral Support ADC, PWM, GPIO, CAN, SPI, SCI (RS232,	
	Visual Real-Time Operating System	
	DSCs	
	MSP430, C2000 Delfino and Piccolo family, Cortex M3, MCUs, DSPs, and	
	Support rapid prototyping and code generation for Texas Instruments	
	Automatically generate code directly from system diagram	
	JTAG hotlink for MCU-in-the-loop verification	
	and Raspberry Pi devices.	
	strength devices from Texas Instruments (TI) as well as popular Arduino	
	Support for Popular Target MCU Hardware; including many industrial-	
	on the target MCU, communicating via a Hotlink.	
	model on the host computer while the control algorithm runs in real-time	
	Interactive Hardware-in-the-Loop (HIL) Testing; capability to run plant	
	microcontroller unit (MCU) hardware-ready code.	
	Automatically converts your block diagrams and state diagrams to	
	behaviours as well as event-based behaviours.	
	Simulate dynamic systems including continuous or discrete-time	
	data.	
	scaled, fixed-point operations. Tune parameters and monitor real-time	
	Generate efficient and compact ANSI C code for dynamic systems involving	
5	The tool should:	
	hardware.	
	generating code from block diagram models and transferring to popular controller	
	The license should include tool for developing embedded systems, by automatically	

A solver to for low-frequency electromagnetic and thermal phenomena for electrical	
engineering concepts.	
It should include:	
• 2D, SKEW and 3D Finite Element package for motor design, for a finer	
motor analysis	
Efficient Machine Pre-Design tool	
• 2D and 3D Motor overlay template driven dedicated environment	
providing libraries of components (rotor types, slots shapes, windings) and	
predefined meshing options to quickly generate machine FE model	
• Embedded multi-parametric analysis capabilities dealing with different	
simulation domains and well suited for Multiphysics couplings.	
Parametric solver allowing geometrical or physical parameter sweeps	
The tool with full range of physical models to simulate the low frequency behaviour	
of electromagnetic devices:	
Magnetic:	
 Static, steady state AC magnetic, transient 	
 Circuit and mechanical couplings 	
Electric: Electrostatic, conduction	
Thermic: Steady state AC thermal, transient	
Thermal couplings: Electrothermal, magnetothermal	
Skewed geometries	
• The skew environment should have magneto static, steady state AC	
magnetic and transient magnetic capabilities.	
Coupling with system simulation tools for drive and control analysis to study control	
strategy.	
• Coupling with CFD tools, to study the flow and determine thermal hotspots	
during the operation of the machine	
Auto-adaptive mesh refinement during solving in 2D & 3D	
Demagnetization of permanent magnets	
The tool should have:	
• Complete workflow in a single user interface with 2D, 3D and skew, 2.5 D	
Non-meshed coils	
• Design environment to build a machine from standard or customized parts,	
add windings and materials to run a selection of tests and compare results.	
Capability to model both star and delta connected motors	
Support for non- meshed coils which allows to create complex coils, like circular	
coils, rectangular coils, composed coils, multi saddle coils, and saddle coils.	

	Feature extended multiparametric analysis capabilities, electrical circuit and
	kinematic couplings, the tool allows to analyze, design and optimize the following in
	single package.
	Rotating machines
	Linear actuators, solenoids
	Transformers & inductances
	Induction heating processes
	Sensors
	Cables, electric connections
	Electromagnetic compatibility
	Wireless chargers for EV's
	The tool should have in-built overlays
	• It should provide in-built motor overlays such as BLDC, PMSM, and Induction
	Motor in 3D.
	• It should provide in-built 2D overlays for BLDC Inner & Outer Rotor, PMDC, SRM,
	induction motor, induction motor outer rotor.
	The overlays should consist geometry, mesh and windings
	It should provide in-built overlay for 3-phase transformer to perform no-load and
	short circuit test.
	The solver features:
	The modelling of machines should have a rotor or stator with Skew slots
	• Non- meshed coils which allows to create complex coils, like circular coils,
	rectangular coils, composed coils, multi saddle coils, and saddle coils.
	Mathematical model to consider thickness of lamination of both stator and rotor
	core.
	The tool should provide the following productivity features:
	Jiles Atherton model to calculate hysteresis losses
	Provision for hysteresis modeling, based on Preisach's model, for accurate
	evaluation of iron losses and remanence effects
	Preisach static vector model should be in available in 2D and 3D
	Efficiency maps
	The tool should provide dedicated macros for automated operations for:
	 PMSM efficiency maps
	 Finding out efficiency map max speed/ max torque point
	 Finding out efficiency map corner point, Imax, and angle
	 Halbach Magnetization For 2D and 3D
	 Creating initial non-meshed coils for radial motor
L	1

 Compute frozen permeability. 	
 Slipping mean value 	
 Slipping RMS value 	
Faulhabercoils	
Thermal Analysis capabilities:	
The tool should provide steady state thermal and transient thermal application in	
2D and 3D framework.	
Thermal coupling in 2D environment	
Steady state AC magnetic coupled with transient thermal	
Steady state AC electric coupled with transient thermal	
Electric conduction coupled with transient thermal	
Thermal coupling application in 3D environment	
Steady state AC magnetic coupled with transient thermal	
Specialized features:	
• The tool should be able to model both star and delta connected motors	
• The tool should be able to simulate streamer criterion, to evaluate	
breakdown voltage in order to improve the design of electrical	
equipment's	
The tool should provide macro to drive motor with PWM signal	
The tool should be able to drive through groovy language; User	
subroutines for hysteresis's current control.	
The tool should allow both T-phi and AV formulation	
The tool should provide a dedicated module for the pre-design of electric rotating	
machines.	
• Design environment to build a machine from standard or customized parts, add	
windings and materials to run a selection of tests and compare results.	
• Effective machine parts management (slots, magnet shapes, etc.) with possible	
customizations.	
Automated tests ready to be performed:	
Maps vs (Id, Iq): Flux, inductance, torque, iron losses, etc	
Open circuit tests with cogging torque and back-emf	
• Torque-speed curves & efficiency maps considering thermal, mechanics,	
electronics constraints.	
Should allow to describe duty cycle for Efficiency maps computation	
Should allow to do FE based tests at predesign stage.	
• Should couple with optimization tool to perform optimization at predesign	
stage.	

	Automatically export results with design data as document
7	Post Processing Tool
	• Complete visualization environment for FEA, CFD, and multi-body system
	simulation data.
	• A multi-window, multi-page environment: To check for correlations
	between two models or simulation and reality, results can be overlaid with
	a model or video within the same window.
	• Results Math is a powerful tool to generate new results from existing
	simulations by using mathematical expressions or external scripting
	languages.
	• Time consuming result manipulation tasks can be performed in batch file.
	• All post-processing sessions can be stored in a session file or a report
	template.
	• Session files help to reopen a complete session spanning across multiple
	pages and applications.
	• Tool enables users to share CAE results within a 3D web environment or
	Microsoft PowerPoint using compact file.
	• Users can create custom model views such as section cuts and exploded
	views by combining functionality from Tool's comprehensive post-
	processing tool and utility set
	• Different types of animations like Animations Contours (Scalar & Tensor),
	Vector plots, dynamics animations with flex-bodies are supported.
	Tensor plots, Deformation plots, CFD streamline plots, Deformed
	animations, Linear animations, Modal animations, Transient animations,
	Multi-body
	Tool saves 3-D animation results in compact format
	Visualization environment for finite element analysis, CFD and multi-body
	system data
	Data Analysis and Graphical Tool
	Eliminates repetitive tasks. Plot macros capture and automate common
	math expressions.
1	Data Analysis and Graphical Tool
•	 Plot macros capture and automate common math expressions.
•	 Report templates can capture and automate the building of entire pages of data
	plots. These can be reused for model variations and similar models.
•	• A library of over 200 mathematical functions is included and user defined math
	functions can be added.

	• Tool supports units starting from data import all the way through predefined	_
	functions. Conversion between units is possible.	
	Automation tools for efficient data analysis and report generation	
	• Contains a sophisticated math engine for performing complex mathematical	
	operations or building custom math expressions	
8	The vendor or OEM should conduct Faculty Development Programs (3-days each)	
	on the following domains:	
	 Electrical & Electromagnetics 	
	 Motor Design & Analysis 	
	• Mechatronics	
	 Math & Systems 	
9	The vendor or OEM should provide a free Training Programs, for various domains of	
	engineering.	
	• The training programs should be conducted for total of 8 days in a calendar	
	year.	
	Under this free training program, the vendor or OEM should have a	
	dedicated website to register for such trainings.	
	• The training classes should be at vendor/OEM's regional offices as well as	
	university.	
	• Some of the training that vendor/OEM should offer are:	
	 Motor Design 	
	 Low Frequency Electromagnetic Simulation 	
10	The vendor/OEM should provide certification program for the students, to improve	
	their knowledge and productivity.	
	Students can take free certification through the online portal of the OEM of the	
	software tool.	
	The certification program should be on:	
	Pre-processing and meshing	
	Electromagnetic Simulation	
11	The OEM/vendor should provide an online Learning Library to offer videos and	
	resources that can be used to build the skills of the students.	

12	The vendor/OEM should provide the teaching material on the tools as mentioned	
	below.	
	• PPTs (for your presentations while teaching in the classroom)	
	 Reading material (PDFs) for your students` self-learning 	
	Tutorials - Handouts (PDFs) for your students	
	Model Files to practise	
13	The vendor/OEM should provide Internship Opportunity of eligible students; subject	
	to their terms and conditions.	
	The vendor/OEM should conduct tests and interviews of shortlisted students, once	
	a year, to select students either for internship or as trainees. Subject to selection	
	criteria.	
	The selection should be based on eligibility and positions being available at OEM.	
14	The vendor/OEM should Conduct two Workshops in a year on emerging topics like:	
	Low Frequency Electromagnetic Simulation	
	Motor Design and Simulation	
	• The cost and infrastructure for conducting workshop to be borne by the	
	institute. The vendor/OEM should to provide expertise.	
	The vendor/OEM should arrange domain expert speakers for these	
	workshops, from OEM & Industry, subject to availability.	
	• The workshops should include latest updates & case studies in Simulation	
	for Engineering domain covering varied topics like, Crash/Safety, CFD for	
	improved product design, Design for 3D Print, Composites, Manufacturing	
	Simulation, etc	
15	The OEM should provide access to an "online portal" for "Industry-Institute"	
	collaboration, and accessible to institute, select students and to connect with	
	registered companies on the portal.	
	This portal should provide opportunity to connect with the participating companies	
	on the program and attend events from Industry experts sharing their specialized	
	knowledge.	

ANNEXURE

Specification for Antenna Design and High Frequency EM Simulation Interface

Sr. No.	Description	
4.	The vendor should deliver:	
	Commercial Grade R&D License	
	• 5-Users	
	Paid-Up License, M &S for 1 Year	
	64-bit, Windows, Node Locked / Floating	
	The software package must provide the following tools:	
2.	High Frequency Electromagnetic Tool	
	An electromagnetic-EM simulation software that uses multiple frequency and time	
	domain techniques with true hybridization for antenna design and placement,	
	scattering, and EM compatibility (EMC), including EM pulses, lightning effects, high	
	intensity radiated fields and radiation hazard.	
	The tool should provide:	
	• Method of moments (MoM) - Ideal for radiation and coupling analysis.	
	Multi-level fast multipole method (MLFMM) - Ideal for electrically large, full	
	wave analysis.	
	• Finite element method (FEM) - Ideal for problems with several dielectrics	
	and waveguides.	
	Finite difference time domain (FDTD) - Well suited to modelling	
	inhomogeneous materials and simulations over a wide frequency range.	
	• Physical optics (PO) and large element physical optics (LE-PO) - Ideal for	
	electrically very large radiation and scattering analysis.	
	• Ray Launching geometrical optics (RL-GO) - Ideal for dielectric or metal,	
	electrically very large scattering analysis.	
	• Uniform theory of diffraction (UTD) - Ideal for electrically extremely large,	
	perfect electrically conducting (PEC) structures.	
	Unique characteristic mode analysis (CMA) solver calculates modal	
	currents, eigenvalues, modal significance and characteristic angles	
	Dedicated solver WinProp for wave propagation and radio network	
	coverage analysis	
	The tool should provide following full bi-directional hybridization:	
	Hybrid FEM-MoM solver / Hybrid FEM-MLFMM solver / Hybrid MoM-GO	
	solver / Hybrid MoM-UTD solver / Hybrid MoM-PO solver / Hybrid MoM-	
	LE-PO solver / Hybrid MLFMM – RLGO solver	

	The test would have falled in a Duaduativity Fastures.
	The tool must have following Productivity Features:
	In-Built Windscreen Antenna Analysis tool efficient analysis of antennas
	integrated into layered windscreens
	Higher order and curvilinear element support that allows geometry to be
	meshed with larger triangles, which reduces the number of unknowns to be
	solved and the required memory.
	Periodic boundary conditions for analysing repetitive linear and planar
	structures, for example frequency selective surfaces (FSS).
	• Fast array analysis for solving large, finite metallic antenna arrays.
	Characteristic mode analysis that provides physical insight into the radiating
	behaviour of objects, allowing for a systematic approach to antenna design and
	placement.
	• Error estimation and adaptive meshing for assessing the quality of a mesh and
	adaptively refining the mesh in insufficiently meshed regions.
	Model decomposition through the substitution of complex sources and
	receivers with numerically efficient equivalent sources.
	• Numerical Green's function for problems containing static and dynamic parts,
	allowing re-use of the static part of the solution in subsequent simulations
	Adaptive cross approximation (ACA) acceleration of the method of moments
	solution of complex problems, also effective for low frequency problems.
	• Parallel and graphics processing unit (GPU) support for speeding up simulations.
3	The tool must provide a dedicated module for wave propagation and radio network
	planning.
	This module should provide wave propagation models for different scenarios and
	network planning simulators for various air interfaces.
	This tool should define/edit the settings of the simulation project:
	Selection of the scenario (rural, urban, indoor, tunnel, etc.)
	Selection of the required (pixel and/or vector) databases and the parameters of
	the databases can be modified (e.g. clutter losses, clutter heights, material
	properties, etc.)
	Definition of simulation areas: Prediction areas (incl. multiple heights),
	resolution of the results matrices, size and orientation of the (arbitrary)
	prediction planes, etc.
	Definition of the properties of the air interface
	• The properties of the mobile stations are defined (only relevant if network
	planning modules are used)
	Sites, transmitters, and antennas are set and their properties

6	Post Processing Tool
	Spatial channel impulse response (CIR)
	• Computed propagation paths in an adaptive cruise control (ACC) scenario.
5	Computed propagation paths in a car-to-car scenario.
	This module should be able to compute:
	path.
	available to predict additionally the Doppler shift for each propagation
	Besides the indoor propagation models; a ray-optical model must be
	should be used.
	 For the time-variant scenarios all propagation models of the indoor scenarios
	vector database or to groups of objects.
	 Time variant behaviour can be assigned individually to each element in the
	of the objects in the time variant scenarios.
4	The tool should provide a dedicate module that can be used to define the movement
	polygons into ASCII files
	Export of result maps to other data formats (e.g. Google Earth) and export along
	 Additional layers with graphical elements drawn by the user can be displayed together with the simulation result maps
	text outputs on maps, etc.)
	• Display settings to control the visualization (legend, thresholds, colors, symbols,
	statistical values)
	Differences between predictions and measurements (incl. difference plots and statistical values)
	routes)
	• Evaluation along user-defined routes in result maps (virtual measurement
	Masks and filters to analyze and/or manipulate specific areas
	Statistical evaluations of result maps (histograms, pdf, cdf,)
	area
	• Display of directional channel impulse responses for all pixels in the simulation
	Display of propagation paths in 2D and 3D
	Mouse tools to zoom, edit, rotate,
	Display of result maps (matrices) in 2D and 3D
	The tool must provide a result browser and 3D result view, as follows:
	All parameters of the propagation model can be edited
	losses) are defined
	• (Tx power, carriers, antennas (location, radiation pattern, tilt,azymuth), cable

,	
	Complete visualization environment for FEA, CFD, and multi-body system
	simulation data.
	• A multi-window, multi-page environment: To check for correlations
	between two models or simulation and reality, results can be overlaid with
	a model or video within the same window.
	Results Math is a powerful tool to generate new results from existing
	simulations by using mathematical expressions or external scripting
	languages.
	• Time consuming result manipulation tasks can be performed in batch file.
	• All post-processing sessions can be stored in a session file or a report
	template.
	Session files help to reopen a complete session spanning across multiple
	pages and applications.
	• Tool enables users to share CAE results within a 3D web environment or
	Microsoft PowerPoint using compact file.
	Users can create custom model views such as section cuts and exploded
	views by combining functionality from Tool's comprehensive post-
	processing tool and utility set
	• Different types of animations like Animations Contours (Scalar & Tensor),
	Vector plots, dynamics animations with flex-bodies are supported.
	 Tensor plots, Deformation plots, CFD streamline plots, Deformed
	animations, Linear animations, Modal animations, Transient animations,
	Multi-body
	Tool saves 3-D animation results in compact format
	Visualization environment for finite element analysis, CFD and multi-body
	system data
	Data Analysis and Graphical Tool
	Eliminates repetitive tasks. Plot macros capture and automate common
	math expressions.
Da	ata Analysis and Graphical Tool
•	Plot macros capture and automate common math expressions.
•	Report templates can capture and automate the building of entire pages of data
	plots. These can be reused for model variations and similar models.
•	A library of over 200 mathematical functions is included and user defined math
	functions can be added.
•	Tool supports units starting from data import all the way through predefined
	functions. Conversion between units is possible.

	Automation tools for efficient data analysis and report generation	
	Contains a sophisticated math engine for performing complex mathematical	
	operations or building custom math expressions	
7	The vendor or OEM should conduct Faculty Development Programs (3-days each)	
	on the following domains:	
	 Antenna Designs 	
	o EMI / EMC	
	 Wave Propagation Analysis 	
8	The vendor or OEM should provide a free Training Programs, for various domains of	
	engineering.	
	• The training programs should be conducted for total of 8 days in a calendar	
	year.	
	Under this free training program, the vendor or OEM should have a	
	dedicated website to register for such trainings.	
	• The training classes should be at vendor/OEM's regional offices as well as	
	university.	
	• Some of the training that vendor/OEM should offer are:	
	 Antenna Designs and Electromagnetics 	
	 Wave Propagation Techniques 	
9	The vendor/OEM should provide certification program for the students, to improve	
	their knowledge and productivity.	
	Students can take free certification through the online portal of the OEM of the	
	software tool.	
	The certification program should be on:	
	Pre-processing and meshing	
	Electromagnetic Simulation	
10	The OEM/vendor should provide an online Learning Library to offer videos and	
	resources that can be used to build the skills of the students.	
11	The vendor/OEM should provide the teaching material on the tools as mentioned	
	below.	
	• PPTs (for your presentations while teaching in the classroom)	
	Reading material (PDFs) for your students` self-learning	
	Tutorials - Handouts (PDFs) for your students	
	Model Files to practise	

 to their terms and conditions. The vendor/OEM should conduct tests and interviews of shortlisted students, once a year, to select students either for internship or as trainees. Subject to selection criteria. The selection should be based on eligibility and positions being available at OEM. 13 The vendor/OEM should Conduct two Workshops in a year on emerging topics like: Low Frequency Electromagnetic Simulation Motor Design and Simulation The cost and infrastructure for conducting workshop to be borne by the institute. The vendor/OEM should arrange domain expert speakers for these workshops, from OEM & Industry, subject to availability. 	
 a year, to select students either for internship or as trainees. Subject to selection criteria. The selection should be based on eligibility and positions being available at OEM. 13 The vendor/OEM should Conduct two Workshops in a year on emerging topics like: Low Frequency Electromagnetic Simulation Motor Design and Simulation The cost and infrastructure for conducting workshop to be borne by the institute. The vendor/OEM should to provide expertise. The vendor/OEM should arrange domain expert speakers for these 	
criteria. The selection should be based on eligibility and positions being available at OEM. 13 The vendor/OEM should Conduct two Workshops in a year on emerging topics like: Low Frequency Electromagnetic Simulation Motor Design and Simulation The cost and infrastructure for conducting workshop to be borne by the institute. The vendor/OEM should to provide expertise. The vendor/OEM should arrange domain expert speakers for these 	
The selection should be based on eligibility and positions being available at OEM. 13 The vendor/OEM should Conduct two Workshops in a year on emerging topics like: Low Frequency Electromagnetic Simulation Motor Design and Simulation The cost and infrastructure for conducting workshop to be borne by the institute. The vendor/OEM should to provide expertise. The vendor/OEM should arrange domain expert speakers for these 	
13 The vendor/OEM should Conduct two Workshops in a year on emerging topics like: • Low Frequency Electromagnetic Simulation • Motor Design and Simulation • The cost and infrastructure for conducting workshop to be borne by the institute. The vendor/OEM should to provide expertise. • The vendor/OEM should arrange domain expert speakers for these	
 Low Frequency Electromagnetic Simulation Motor Design and Simulation The cost and infrastructure for conducting workshop to be borne by the institute. The vendor/OEM should to provide expertise. The vendor/OEM should arrange domain expert speakers for these 	
 Motor Design and Simulation The cost and infrastructure for conducting workshop to be borne by the institute. The vendor/OEM should to provide expertise. The vendor/OEM should arrange domain expert speakers for these 	
 The cost and infrastructure for conducting workshop to be borne by the institute. The vendor/OEM should to provide expertise. The vendor/OEM should arrange domain expert speakers for these 	
institute. The vendor/OEM should to provide expertise.The vendor/OEM should arrange domain expert speakers for these	
• The vendor/OEM should arrange domain expert speakers for these	
workshans from OEM & Industry subject to availability	
workshops, nom delvi & industry, subject to availability.	
The workshops should include latest updates & case studies in Simulation	
for Engineering domain covering varied topics like, Crash/Safety, CFD for	
improved product design, Design for 3D Print, Composites, Manufacturing	
Simulation, etc	
14 The OEM should provide access to an "online portal" for "Industry-Institute"	
collaboration, and accessible to institute, select students and to connect with	
registered companies on the portal.	
This portal should provide opportunity to connect with the participating companies	
on the program and attend events from Industry experts sharing their specialized	
knowledge.	

ANNEXURE

Specification for Vehicle Dynamics and Suspension Analysis Framework

Sr. No.	Description	
5.	The vendor should deliver:	
	Commercial Grade R&D License	
	• 5-Users	
	Paid-Up License, M &S for 1 Year	
	64-bit, Windows, Node Locked / Floating	
	The software package must provide the following tools:	
2	The license provides a dedicated tool for multi-disciplinary design exploration tool	
	used for parameter screening, optimization, reliability and stochastic studies.	
	• The tool should automatically create intelligent design variants, manages runs,	
	and collects data.	
	The tool must have Design of Experiments (DOE) methods:	
	• Full factorial	
	o Plackett-Burman	
	 Central composite design 	
	 Modified Extensible Lattice Sequence (MELS) 	
	o Hammersley	
	o D-Optimal	
	• Fractional factorial	
	o Box-Behnken	
	The tool must provide following optimization methods to solve different types of	
	design problems including multi-objective and reliability/robustness based design	
	optimization.	
	Adaptive response surface method (ARSM)	
	Sequential quadratic programming	
	Genetic algorithm	
	System Reliability Optimization (SRO)	
	Sequential optimization and reliability analyses (SORA)	
	Single loop approach	
	Method of Feasible Directions (MFD)	
	Global response surface method (GRSM)	
	Multi-objective genetic algorithm	
	ARSM based SORA	
	User-defined optimizer	

3	A multi-body systems analysis module for mechanical system simulation.	η
	This tool should provide capabilities for multi-disciplinary simulations for system	
	level analyses such as	
	kinematics and dynamics,	
	 statics and quasi-statics, 	
	Iinear and vibration studies,	
	effort estimation,	
	vehicle dynamics,	
	low frequency NVH	
	 packaging synthesis. 	
	It should compute the necessary inputs for performing component strength	
	calculations, weight minimization and fatigue life prediction.	
	The tool should provide following simulation and analysis:	
	Assemble a system to satisfy all its constraints	
	Kinematic and inverse kinematic analysis	
	Static Equilibrium	
	Quasi-static and steady state solutions	
	Nonlinear, time domain dynamics simulations	
	Eigenvalue and Eigenvector calculation	
	Transfer function analysis given inputs and outputs	
	Scripted simulations; commands to modify the model	
	General purpose co-simulation	
4	A Generative Design/Topology Optimization and rapid simulation tool.	
	The tool should generate dynamic motion of complex mechanisms,	
	automatically identifying contacts, joints, springs and dampers.	
	• Forces obtained from a motion analysis should be automatically applied as	
	inputs to a structural analysis and optimization, or could be used to determine	
	initial requirements for motors and actuators.	
	• Should offer a number of topology options including: optimization objectives,	
	stress and displacement constraints, acceleration, gravity, and temperature	
	loading conditions	
	Investigate linear static and normal modes analysis on a model and visualize	
	displacement, factor of safety, percent of yield, tension and compression, von	
	Mises stress, and major principal stress.	
	The tool should be packaged with a material library including various aluminum,	
	steel, magnesium, and titanium alloys. Custom materials could also be added.	
5	Post Processing Tool	

· · · ·	
	Complete visualization environment for FEA, CFD, and multi-body system
	simulation data.
	• A multi-window, multi-page environment: To check for correlations
	between two models or simulation and reality, results can be overlaid with
	a model or video within the same window.
	Results Math is a powerful tool to generate new results from existing
	simulations by using mathematical expressions or external scripting
	languages.
	• Time consuming result manipulation tasks can be performed in batch file.
	• All post-processing sessions can be stored in a session file or a report
	template.
	Session files help to reopen a complete session spanning across multiple
	pages and applications.
	• Tool enables users to share CAE results within a 3D web environment or
	Microsoft PowerPoint using compact file.
	Users can create custom model views such as section cuts and exploded
	views by combining functionality from Tool's comprehensive post-
	processing tool and utility set
	• Different types of animations like Animations Contours (Scalar & Tensor),
	Vector plots, dynamics animations with flex-bodies are supported.
	Tensor plots, Deformation plots, CFD streamline plots, Deformed
	animations, Linear animations, Modal animations, Transient animations,
	Multi-body
	Tool saves 3-D animation results in compact format
	Visualization environment for finite element analysis, CFD and multi-body
	system data
	Data Analysis and Graphical Tool
	• Eliminates repetitive tasks. Plot macros capture and automate common
	math expressions.
	ata Analysis and Graphical Tool
•	Plot macros capture and automate common math expressions.
•	Report templates can capture and automate the building of entire pages of data
	plots. These can be reused for model variations and similar models.
•	A library of over 200 mathematical functions is included and user defined math
	functions can be added.
•	Tool supports units starting from data import all the way through predefined
	functions. Conversion between units is possible.

	Automation tools for efficient data analysis and report generation
	 Contains a sophisticated math engine for performing complex mathematical
	operations or building custom math expressions
6	The vendor or OEM should conduct Faculty Development Programs (3-days each)
	on the following domains:
	 Mechanisms and Kinematics simulation
	Vehicle dynamics
7	The vendor or OEM should provide a free Training Programs, for various domains of
	engineering.
	The training programs should be conducted for total of 8 days in a calendar
	year.
	Under this free training program, the vendor or OEM should have a
	dedicated website to register for such trainings.
	• The training classes should be at vendor/OEM's regional offices as well as
	university.
	Some of the training that vendor/OEM should offer are:
	 Multibody Dynamics
	 Vehicle Suspension
8	The vendor/OEM should provide certification program for the students, to improve
	their knowledge and productivity.
	Students can take free certification through the online portal of the OEM of the
	software tool.
	The certification program should be on:
	Pre-processing and meshing
	Mechanism Simulation
9	The OEM/vendor should provide an online Learning Library to offer videos and
	resources that can be used to build the skills of the students.
10	The vendor/OEM should provide the teaching material on the tools as mentioned
	below.
	PPTs (for your presentations while teaching in the classroom)
	Reading material (PDFs) for your students` self-learning
	Tutorials - Handouts (PDFs) for your students
	Model Files to practise

11	The vendor/OEM should provide Internship Opportunity of eligible students; subject	
	to their terms and conditions.	
	The vendor/OEM should conduct tests and interviews of shortlisted students, once	
	a year, to select students either for internship or as trainees. Subject to selection	
	criteria.	
	The selection should be based on eligibility and positions being available at OEM.	
12	The vendor/OEM should Conduct two Workshops in a year on emerging topics like:	
	Low Frequency Electromagnetic Simulation	
	Motor Design and Simulation	
	• The cost and infrastructure for conducting workshop to be borne by the	
	institute. The vendor/OEM should to provide expertise.	
	• The vendor/OEM should arrange domain expert speakers for these	
	workshops, from OEM & Industry, subject to availability.	
	• The workshops should include latest updates & case studies in Simulation	
	for Engineering domain covering varied topics like, Crash/Safety, CFD for	
	improved product design, Design for 3D Print, Composites, Manufacturing	
	Simulation, etc	
13	The OEM should provide access to an "online portal" for "Industry-Institute"	
	collaboration, and accessible to institute, select students and to connect with	
	registered companies on the portal.	
	This portal should provide opportunity to connect with the participating companies	
	on the program and attend events from Industry experts sharing their specialized	
	knowledge.	